早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).(Ⅰ)用数学归纳法证明:an≥2(n≥2);(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….

题目详情
数列{an}满足a1=1且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1).
(Ⅰ)用数学归纳法证明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….
▼优质解答
答案和解析
(Ⅰ)证明:
①当n=2时,a2=2≥2,不等式成立.
②假设当n=k(k≥2)时不等式成立,即ak≥2(k≥2),
那么ak+1=(1+
1
k(k+1)
)ak+
1
2k
≥2.这就是说,当n=k+1时不等式成立.
根据(1)、(2)可知:ak≥2对所有n≥2成立.
(Ⅱ)由递推公式及(Ⅰ)的结论有an+1=(1+
1
n2+n
)an+
1
2n
≤(1+
1
n2+n
+
1
2n
)an(n≥1)
两边取对数并利用已知不等式得lnan+1≤ln(1+
1
n2+n
+
1
2n
)+lnan≤lnan+
1
n2+n
+
1
2n

故lnan+1-lnan
1
n(n+1)
+
1
2n
(n≥1).
上式从1到n-1求和可得lnan-lna1
1
1×2
+
1
2×3
+…+
1
(n−1)n
+
1
2
+
1
22
+…+
1
2n−1

=1-
1
2
+(
1
2
-
1
3
)+…+
1
n−1
-
1
n
+
1
2
1−
1
2n
1−
1
2
=1-
1
n
+1-
1
2n
<2
即lnan<2,故an<e2(n≥1).