早教吧作业答案频道 -->数学-->
如图所示,已知在△AEC中,∠E=90°,AD平分∠EAC,DF⊥AC,垂足为F,DB=DC.求证:BE=CF.
题目详情
如图所示,已知在△AEC中,∠E=90°,AD平分∠EAC,DF⊥AC,垂足为F,DB=DC.
求证:BE=CF.

求证:BE=CF.

▼优质解答
答案和解析
证明:∵在△AEC中,∠E=90°,AD平分∠EAC,DF⊥AC,
∴DE=DF,∠E=∠DFC=90°,
在Rt△BED和Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF.
∴DE=DF,∠E=∠DFC=90°,
在Rt△BED和Rt△CFD中,
|
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF.
看了 如图所示,已知在△AEC中,...的网友还看了以下:
mathematica解一元六次方程Solve[{b==f+a,c+d==b,f+g==d,40- 2020-05-16 …
若f(x)在R上有二阶连续导数,证明对任意的a<c<b,存在ξ∈(a,b),使得f(a)(a−b) 2020-06-12 …
已知:0°C时等于32°F,100°C时等于212°F.求20°C时等于多少°F,90°F等于多少 2020-06-12 …
返回值#DIV/0!,这是因为除数为零,但是除数部分设置sumif公式引用另一个工作表的数据而来的 2020-07-23 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c设对任意实数x, 2020-11-10 …
已知函数f(x)=(1/3)x—log2x,正实数a,b,c是公差为正数的等差数列,且满足f(a)f 2020-11-17 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
定义:若函数f(x)对于其定义域内的某一数c,有f(c)=c,则称c是f(x)的一个不动点,已知f( 2020-12-22 …