早教吧作业答案频道 -->其他-->
在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD.(1)当a为何值时,BD⊥平面PAC?试证明你的结论.(2)当a=4时,求证:BC边上存在一点M,使得PM⊥DM.(3)若在BC边上至少
题目详情
在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD.
(1)当a为何值时,BD⊥平面PAC?试证明你的结论.
(2)当a=4时,求证:BC边上存在一点M,使得PM⊥DM.
(3)若在BC边上至少存在一点M,使PM⊥DM,求a的取值范围.
(1)当a为何值时,BD⊥平面PAC?试证明你的结论.
(2)当a=4时,求证:BC边上存在一点M,使得PM⊥DM.
(3)若在BC边上至少存在一点M,使PM⊥DM,求a的取值范围.
▼优质解答
答案和解析
(1)当a=2时,ABCD为正方形,则BD⊥AC.
又∵PA⊥底面ABCD,BD⊂平面ABCD,
∴BD⊥PA.∴BD⊥平面PAC.
故当a=2时,BD⊥平面PAC.
(2)证明:当a=4时,取BC边的中点M,AD边的中点N,连接AM、DM、MN.
∵ABMN和DCMN都是正方形,
∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM.
又PA⊥底面ABCD,由三垂线定理得,PM⊥DM,故当a=4时,BC边的中点M使PM⊥DM.
(3)设M是BC边上符合题设的点M,
∵PA⊥底面ABCD,∴DM⊥AM.
因此,M点应是以AD为直径的圆和BC边的一个公共点,则AD≥2AB,即a≥4为所求.

又∵PA⊥底面ABCD,BD⊂平面ABCD,
∴BD⊥PA.∴BD⊥平面PAC.
故当a=2时,BD⊥平面PAC.
(2)证明:当a=4时,取BC边的中点M,AD边的中点N,连接AM、DM、MN.
∵ABMN和DCMN都是正方形,
∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM.
又PA⊥底面ABCD,由三垂线定理得,PM⊥DM,故当a=4时,BC边的中点M使PM⊥DM.
(3)设M是BC边上符合题设的点M,
∵PA⊥底面ABCD,∴DM⊥AM.
因此,M点应是以AD为直径的圆和BC边的一个公共点,则AD≥2AB,即a≥4为所求.
看了 在四棱锥P-ABCD中,底面...的网友还看了以下:
基本不等式应用题1题在直角三角形中,1.若斜边c=1,求内切圆半径r的最大值2.若周长为2,求△A 2020-04-27 …
如图,在矩形ABCD中,AB=2,BC=a,又PA垂直面ABCD,PA=4,1)若在边BC上存在一 2020-05-24 …
如图,在四边形ABCD中,点E,F是对角线BD上的两点,且BE=DF.(1)若四边形AECF是平行 2020-06-13 …
平面直角坐标系中,A为直线y=-1/2x+3上的一点,AB垂直于x轴,AC垂直于y轴.(1)若四边 2020-06-27 …
平面直角坐标系中,A为直线y=-1/2x+3上的一点,AB垂直于x轴,AC垂直于y轴.|(1)若四 2020-06-27 …
已知角a的顶点在原点,始边与x轴半轴重合1,若终边经过p(-1,2)求sina,cosa,tana 2020-07-30 …
如图:平面直角坐标系中,A为直线y=-二分之一x+3上的一点,AB⊥x轴,AC⊥y轴1.若四边形A 2020-08-01 …
1,若多边形限定最多有四个钝角,则这个多边形的边数最多是?A:5B:6C:7D:82,已知一个n边形 2020-12-14 …
1.若多边型的所有内角与它的一个外角的和为600度.求这个多边型的边数和内角和2.如图,五边型ABC 2020-12-14 …
1.若等边三角形的边长为根号3,求它的面积2.已知直角三角形的两直角边分别为6和8,求斜边上的高3. 2021-02-07 …