早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1,若多边形限定最多有四个钝角,则这个多边形的边数最多是?A:5B:6C:7D:82,已知一个n边形,除去一个内角后,其余的(n-1)个内角的和是1035,则除去的这个角的度数为?

题目详情
1,若多边形限定最多有四个钝角,则这个多边形的边数最多是?
A:5 B:6 C:7 D:8
2,已知一个 n边形,除去一个内角后,其余的(n-1)个内角的和是1035,则除去的这个角的度数为?
▼优质解答
答案和解析
1.
C:7
多边形最多有3个锐角,因为如果有4个锐角,则有4个外角是钝角,则外角和大于360度.
所以3+4=7个内角.即最多为7边形
2.
10355.75n-2=6
n=8
(8-2)*180-1035=45