早教吧作业答案频道 -->数学-->
抛物线y=ax2+bx+c与x轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p相交于点A和点C(2m-4,m-6)。(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶
题目详情
抛物线y=ax 2 +bx+c与x轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p相交于点A和点C(2m-4,m-6)。 |
![]() |
(1)求抛物线的解析式; (2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标; (3)在(2)条件下,若点M是x轴下方抛物线上的动点,当⊿PQM的面积最大时,请求出⊿PQM的最大面积及点M的坐标。 |
▼优质解答
答案和解析
(1)∵点A(m-4,0)和C(2m-4,m-6)在直线y=-x+p上 ∴ ![]() ![]() ∴A(-1,0)B(3,0),C(2,-3), 设抛物线y=ax 2 +bx+c=a(x-3)(x+1), ∵C(2,-3), ∴a=1, ∴抛物线解析式为:y=x 2 -2x-3; (2)AC=3 ![]() ∵平行四边形ACQP的面积为12, ∴平行四边形ACQP中AC边上的高为 ![]() 过点D作DK⊥AC与PQ所在直线相交于点K,DK=2 ![]() ∴DN=4 ∵ACPQ,PQ所在直线在直线ACD的两侧,可能各有一条, ∴PQ的解析式或为y=-x+3或y=-x-5, ∴ ![]() ![]() ![]() 即P 1 (3,0),P 2 (-2,5), ∵ACPQ是平行四边形,A(-1,0)C(2,-3), ∴当P(3,0)时,Q(6,-3), 当P(-2,5)时,Q(1,2), ∴满足条件的P,Q点是P 1 (3,0),Q 1 (6,-3)或P 2 (-2,5),Q 2 (1,2); (3) 设M(t,t 2 -2t-3)(-1<t<3), 过点M作y轴的平行线,交PQ所在直线雨点T,则T(t,-t+3) MT=(-t+3)-(t 2 -2t-3)=-t 2 +t+6, 过点M作MS⊥PQ所在直线于点S, MS= ![]() ![]() ![]() ![]() ![]() ∴当t= ![]() ![]() ![]() ![]() | ![]() |
看了 抛物线y=ax2+bx+c与...的网友还看了以下:
如图,抛物线y=-x^2+bx+c经过点A(1,0)和点B(0,5).(1)求此抛物线的解析式及顶 2020-05-16 …
过第四象限的直线与抛物线交于点A(0,3)和和点C,已知点C是抛物线的顶点,且抛物线的对称轴与Y粥 2020-05-16 …
已知抛物线Y=AX^2+bx+c(a不等于0) 的顶点坐标 为Q(2,-1),且与Y轴交于 点C( 2020-05-16 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点 2020-07-20 …
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对 2020-07-29 …
如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,-1)的抛物线y=ax²+bx+c(a 2020-07-29 …
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点 2020-07-30 …
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点 2020-07-30 …
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l2与l1关于 2020-07-30 …