早教吧作业答案频道 -->数学-->
高数导数f(1+sinx)-3f(1-sinx)=8x+o(x)f(1)可导求f1和其导数
题目详情
高数导数
f(1+sinx )-3f(1-sinx )=8x+ o(x) f(1) 可导 求f 1和其导数
f(1+sinx )-3f(1-sinx )=8x+ o(x) f(1) 可导 求f 1和其导数
▼优质解答
答案和解析
当x→0时有f(1+sinx)=f(1-sinx)=f(1) 有
f(1) =0
由f(1+sinx)-3f(1-sinx)=8x+α(x) 两边同时除以sinx
在x→0时有lim (f(1+sinx)-3f(1-sinx))/sinx=lim 8x/sinx
x→0 x/sinx=1 则
lim (f(1+sinx)-3f(1-sinx))/sinx=8
lim (f(1+sinx)-f(1))/sinx-3(f(1-sinx)-f(1))/sinx=8
由于f(1)的导数存在,则f'(1)=-2
f(1) =0
由f(1+sinx)-3f(1-sinx)=8x+α(x) 两边同时除以sinx
在x→0时有lim (f(1+sinx)-3f(1-sinx))/sinx=lim 8x/sinx
x→0 x/sinx=1 则
lim (f(1+sinx)-3f(1-sinx))/sinx=8
lim (f(1+sinx)-f(1))/sinx-3(f(1-sinx)-f(1))/sinx=8
由于f(1)的导数存在,则f'(1)=-2
看了 高数导数f(1+sinx)-...的网友还看了以下:
f(x)=∫(0,2x)f(t/2)dt+ln2,显然f(0)=ln2两边求导f'(x)=f(2x/ 2020-03-31 …
一道求函数可导条件的题目设f(x)可导,F(x)=f(x)(1+|sinx|),若使F(x)在x= 2020-04-26 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设f(x)可导,F(x)=f(x)(1+|x|),要使F(x)在x=0处可导,则必有()设f(x) 2020-06-11 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
f(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,a/f'( 2020-07-16 …
一道高数题设在f(x)在[0,1]上连续,在(0,1)上可导,f(0)=0,f(1)=1,求证对于 2020-07-30 …
y=f(x)五阶可导,f‘(x0)=f‘‘(x0)=f‘‘‘(x0)=f‘‘‘‘(x0)=0,f‘ 2020-07-31 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …