早教吧作业答案频道 -->数学-->
若定义在R上的函数y=f(x)满足:对于任意实数x,y,总有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我们称f(x)为“类余弦型”函数.(1)已知f(x)为“类余弦型”函数,且f(1)=54,求f(0)
题目详情
若定义在R上的函数y=f(x)满足:对于任意实数x,y,总有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我们称f(x)为“类余弦型”函数.
(1)已知f(x)为“类余弦型”函数,且f(1)=
,求f(0)和f(2)的值;
(2)在(1)的条件下,定义数列an=2f(n+1)-f(n)(n=1,2,3…),求log2
+log2
+…+log2
的值;
(3)若f(x)为“类余弦型”函数,且对于任意非零实数t,总有f(t)>1,证明:函数f(x)为偶函数;设有理数x1,x2满足|x1|<|x2|,判断f(x1)和f(x2)的大小关系,并证明你的结论.
(1)已知f(x)为“类余弦型”函数,且f(1)=
| 5 |
| 4 |
(2)在(1)的条件下,定义数列an=2f(n+1)-f(n)(n=1,2,3…),求log2
| a1 |
| 3 |
| a2 |
| 3 |
| a2017 |
| 3 |
(3)若f(x)为“类余弦型”函数,且对于任意非零实数t,总有f(t)>1,证明:函数f(x)为偶函数;设有理数x1,x2满足|x1|<|x2|,判断f(x1)和f(x2)的大小关系,并证明你的结论.
▼优质解答
答案和解析
(1)令x=1,y=0,得f(1)+f(1)=2f(1)f(0),∴f(0)=1;
令x=y=1得f(2)+f(0)=2f2(1),∴f(2)=2f2(1)-f(0)=
.
(2)令x=n+1,y=1,得2f(n+1)f(1)=f(n+2)+f(n).
∴f(n+2)=
f(n+1)-f(n),
∴an+1=2f(n+2)-f(n+1)=2[
f(n+1)-f(n)]-f(n+1)=4f(n+1)-2f(n)=2[2f(n+1)-f(n)]=2an(n≥1).
又a1=2f(2)-f(1)=3
∴{an}是以3为首项,以2为公比的等比数列,
所以an=3•2n-1=3•2n-1.
∴log2
=log22n-1=n-1,
∴{log2
}是以0为首项,以1为公差的等差数列,
∴log2
+log2
+…+log2
=0+1+2+…+2016=
×2017=2033136.
(3)令x=0,得f(y)+f(-y)=2f(0)f(y)=2f(y),
∴f(-y)=f(y),即f(-x)=f(x),
∴f(x)是偶函数.
∵t≠0时,f(t)>1,
∴f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y)
∴令y=kx(k为正整数),对任意的k为正整数,有f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x],
则f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x]>…>f(x)-f(0)>0
∴对于k为正整数,总有f[(k+1)x]>f(kx)成立.
∴对于m,n为正整数,若n<m,则有f(nx)<f[(n-1)x]<…<f(mx)成立.
∵x1,x2为有理数,所以可设|x1|=
,|x2|=
,其中q1,q2是非负整数,p1,p2都是正整数,
则|x1|=
,|x2|=
,令x=
,t=q1p2,s=p1q2,则t,s为正整数.
∵|x1|<|x2|,∴t<s,∴f(tx)<f(sx),即f(|x1|)<f(|x2|).
∵函数f(x)为偶函数,∴f(|x1|)=f(x1),f(|x2|)=f(x2),
∴f(x1)<f(x2).
令x=y=1得f(2)+f(0)=2f2(1),∴f(2)=2f2(1)-f(0)=
| 17 |
| 8 |
(2)令x=n+1,y=1,得2f(n+1)f(1)=f(n+2)+f(n).
∴f(n+2)=
| 5 |
| 2 |
∴an+1=2f(n+2)-f(n+1)=2[
| 5 |
| 2 |
又a1=2f(2)-f(1)=3
∴{an}是以3为首项,以2为公比的等比数列,
所以an=3•2n-1=3•2n-1.
∴log2
| an |
| 3 |
∴{log2
| an |
| 3 |
∴log2
| a1 |
| 3 |
| a2 |
| 3 |
| a2017 |
| 3 |
| 2016 |
| 2 |
(3)令x=0,得f(y)+f(-y)=2f(0)f(y)=2f(y),
∴f(-y)=f(y),即f(-x)=f(x),
∴f(x)是偶函数.
∵t≠0时,f(t)>1,
∴f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y)
∴令y=kx(k为正整数),对任意的k为正整数,有f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x],
则f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x]>…>f(x)-f(0)>0
∴对于k为正整数,总有f[(k+1)x]>f(kx)成立.
∴对于m,n为正整数,若n<m,则有f(nx)<f[(n-1)x]<…<f(mx)成立.
∵x1,x2为有理数,所以可设|x1|=
| q1 |
| p1 |
| q2 |
| p2 |
则|x1|=
| q1p2 |
| p1p2 |
| p1q2 |
| p1p2 |
| 1 |
| p1p2 |
∵|x1|<|x2|,∴t<s,∴f(tx)<f(sx),即f(|x1|)<f(|x2|).
∵函数f(x)为偶函数,∴f(|x1|)=f(x1),f(|x2|)=f(x2),
∴f(x1)<f(x2).
看了 若定义在R上的函数y=f(x...的网友还看了以下:
已知定义在R上的二次函数f(x)满足f(2+x)=f(2-x),且图象在y轴上的截距为5,...已 2020-05-22 …
下列命题:①定义在R上的函数f(x)满足f(4)>f(3),则f(x)是R上的增函数;②定义在R上 2020-06-08 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
分别做出一个函数f(x),g(x)满足:f(x),g(x)定义域为实数集R,f(x)在任意点不可导 2020-06-25 …
在R[X]3中定义内积为(f(x),g(x))=∫-11f(x)g(x)dx,任意f(x),g(x 2020-07-08 …
①定义在R上函数f(x)满足f(2)>f(1),则f(x)是R上的增函数;②定义在R上函数f(x) 2020-07-22 …
1.函数f(x)=2x*x-3│x│的单调减区间是什么?2.设y=f(x)再R上为单调函数,则方程 2020-08-02 …
设定义在R上的函数F(X),对任意X,Y∈R有F(X+Y)=F(X)f(Y)设定义在R上的函数f( 2020-08-02 …
设f(x)是定义在R上的函数,若f(0)=1/8,且对任意的x属于R,满足f(x+2)设f(x)是定 2020-10-30 …
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x,其总成本为G(x) 2020-11-30 …