早教吧作业答案频道 -->其他-->
已知坐标平面内OA=(1,5),OB=(7,1),OM=(1,2),P是直线OM上的一个动点,当PA*PB取最小值时,求OP的坐标,并求cosAPB的值
题目详情
已知坐标平面内OA=(1,5),OB=(7,1),OM=(1,2),P是直线OM上的一个动点,当PA*PB取最小值时,求OP的坐标,
并求cosAPB的值
并求cosAPB的值
▼优质解答
答案和解析
直线OM斜率是2,所以其方程是y=2x
P在上面,所以设P坐标是(x,2x)
所以PA向量=(1-x,5-2x),PB向量=(7-x,1-2x)
所以PA乘以PB
=(1-x)(7-x)+(5-2x)(1-2x)
=7-8x+x^2 + 5-12x+4x^2
=5x^2 -20x+12
这是一个二次函数,在x=20/(2*5)=2处取最小值,最小值是5*4-40+12
=-8
此时OP坐标为(2,4)
PA=(-1,1) PB=(5,-3)
|PA|=根号2,|PB|=根号34
所以向量PA点乘PB=-8=|PA|*|PB|*cosAPB=2倍根号17 * cosAPB
所以APB余弦值为-4/根号17
P在上面,所以设P坐标是(x,2x)
所以PA向量=(1-x,5-2x),PB向量=(7-x,1-2x)
所以PA乘以PB
=(1-x)(7-x)+(5-2x)(1-2x)
=7-8x+x^2 + 5-12x+4x^2
=5x^2 -20x+12
这是一个二次函数,在x=20/(2*5)=2处取最小值,最小值是5*4-40+12
=-8
此时OP坐标为(2,4)
PA=(-1,1) PB=(5,-3)
|PA|=根号2,|PB|=根号34
所以向量PA点乘PB=-8=|PA|*|PB|*cosAPB=2倍根号17 * cosAPB
所以APB余弦值为-4/根号17
看了 已知坐标平面内OA=(1,5...的网友还看了以下:
共线向量定理平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一 2020-05-16 …
求轨迹方程设A,B分别是直线Y=2倍根号5和Y=-2倍根号5上两个动点,并且向量AB=根号20,动 2020-05-19 …
已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=45,点P是对角线OB上的 2020-06-14 …
已知向量OA=(1,7),向量OB=(5,1)向量OP=(2,1),点Q为直线OP上一动点,(1) 2020-06-26 …
设A,B分别是直线y=2√(5)/5x和y=-2√(5)/5x上的两个动点设A,B分别是直线y=2 2020-07-20 …
如图,O、A、B为同一竖直平面内的三个点,OB沿竖直方向,∠BOA=60°,OB=32如图,O、A 2020-07-29 …
如图,OB是矩形OABC的对角线,点B的坐标为(3,6).D、E分别是OC、OB上的点,OD=5, 2020-08-01 …
(2012•河源二模)如图:直角梯形AOBC在平面直角坐标系中,AO=4,AC=5,OB=8,D在O 2020-11-12 …
已知A、B是抛物线x^2=2px(p>0)上的两个动点,O为坐标原点,非零向量OA、OB满足OA+O 2020-12-07 …
抛物线参数方程问题.设A,B为抛物线y^2=2px上原点O以外的两个动点,满足OB...抛物线参数方 2021-01-22 …