早教吧作业答案频道 -->数学-->
共线向量定理平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.(1)当向量XA*XB取得最小值时,求向量OX的坐标(2)当点X满足(1)的条件和结论时,求角AXB的余弦值为什么XA*XB=(1-2m)(5-2m)=(7-m)(1
题目详情
共线向量定理
平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.
(1)当向量XA*XB取得最小值时,求向量OX的坐标
(2)当点X满足(1)的条件和结论时,求角AXB的余弦值
为什么XA*XB=(1-2m)(5-2m)=(7-m)(1-m)
平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.
(1)当向量XA*XB取得最小值时,求向量OX的坐标
(2)当点X满足(1)的条件和结论时,求角AXB的余弦值
为什么XA*XB=(1-2m)(5-2m)=(7-m)(1-m)
▼优质解答
答案和解析
点X在OP上,不妨设X的坐标是(2m,m)
则XA=(1-2m,7-m),XB=(5-2m,1-m)
XA*XB
=(1-2m)(5-2m)+(7-m)(1-m)
=(5-12m+4m²)+(7-8m+m²)
=5m²-20m+12
=5(m-2)²-8
当m=2时XA*XB取得最小值,此时X的坐标是(4,2),OX=(4,2)
XA=(-3,5),XB=(1,-1)
|XA|=根号((-3)²+5²)=根号34
|XB|=根号(1²+(-1)²)=根号2
cos角AXB=XA*XB/(|XA|*|XB|)=-8/(根号34*根号2)=-4(根号17)/17
则XA=(1-2m,7-m),XB=(5-2m,1-m)
XA*XB
=(1-2m)(5-2m)+(7-m)(1-m)
=(5-12m+4m²)+(7-8m+m²)
=5m²-20m+12
=5(m-2)²-8
当m=2时XA*XB取得最小值,此时X的坐标是(4,2),OX=(4,2)
XA=(-3,5),XB=(1,-1)
|XA|=根号((-3)²+5²)=根号34
|XB|=根号(1²+(-1)²)=根号2
cos角AXB=XA*XB/(|XA|*|XB|)=-8/(根号34*根号2)=-4(根号17)/17
看了 共线向量定理平面内有向量OA...的网友还看了以下:
设抛物线y^2=2px(p>0)的焦点F,准线L,A.B是抛物线上不同的两点(1)若OA⊥OB(O 2020-05-13 …
已知两条射线OA、OB的方程分别为:y=√3x和y=-√3x (x>0) ,动点P在∠AOB的内部 2020-05-16 …
如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点 2020-06-22 …
如图所示,小球a、b分别系于不可伸长的细线Oa、Ob一端,细线Oa、Ob的另一端系于O点,两球之间 2020-06-29 …
如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点 2020-07-22 …
根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线 2020-07-29 …
如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题 2020-08-02 …
在平面直角坐标系中,过第一象限内的点C向两轴分别做垂线段,垂足分别为A、B,OA=3,OB=4,D 2020-08-03 …
以直角梯形OBDC的下底OB所在的直线为x轴,以垂直于底边的腰OC所在的直线为y轴,O为坐标原点,建 2020-11-12 …
如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,宽OA是4m.拱顶D到地面O 2020-12-25 …