早教吧作业答案频道 -->数学-->
已知y^2=4a(x-a)(a>0)且当x≥a时,S(x)=(x-3)^2+y^2的最小值为4,则实数a的取值?
题目详情
已知y^2=4a(x-a) (a>0)且当x≥a时,S(x)=(x-3)^2+y^2的最小值为4,则实数a的取值?
▼优质解答
答案和解析
这个题目吧瞅着挺难的,其实只是它的表达方式太复杂
下面简化一下~
将y^2=4a(x-a)代入S(x)=(x-3)^2+y^2得
S(x)=(x-3)^2+4a(x-a)=x^2+(4a-6)x+(9-4a^2)
不难看出这是一个二次函数哦~
它的对称轴是x=3-2a(而且它的开口向上哦)
这样话最小值就好找了~
在看取值范围是x≥a,也不知道这个范围的最左端是在对称轴右边,还是在左边或者就在对称轴上~
需要下面讨论哦~
(1)假设在对称轴的右边即a>3-2a即a>1时,最小值就是S(a)=a^2+(4a-6)a+(9-4a^2)=4
解之得a=1或5
有a>1故舍去1即a=5
(2)假设在对称轴的上即a=3-2a即a=1时,最小值为
S(1)=1^2+(4*1-6)*1+(9-4*1^2)=4成立
符合题意~
(3)假设在对称轴的左边即a<3-2a即0<a<1时
最小值为S(3-2a)=(3-2a)^2+(4a-6)*(3-2a)+(9-4a^2)=4
解之得a=1或1/2又0<a<1故舍去1
则a=1/2
综上所述a=5或1或1/2
下面简化一下~
将y^2=4a(x-a)代入S(x)=(x-3)^2+y^2得
S(x)=(x-3)^2+4a(x-a)=x^2+(4a-6)x+(9-4a^2)
不难看出这是一个二次函数哦~
它的对称轴是x=3-2a(而且它的开口向上哦)
这样话最小值就好找了~
在看取值范围是x≥a,也不知道这个范围的最左端是在对称轴右边,还是在左边或者就在对称轴上~
需要下面讨论哦~
(1)假设在对称轴的右边即a>3-2a即a>1时,最小值就是S(a)=a^2+(4a-6)a+(9-4a^2)=4
解之得a=1或5
有a>1故舍去1即a=5
(2)假设在对称轴的上即a=3-2a即a=1时,最小值为
S(1)=1^2+(4*1-6)*1+(9-4*1^2)=4成立
符合题意~
(3)假设在对称轴的左边即a<3-2a即0<a<1时
最小值为S(3-2a)=(3-2a)^2+(4a-6)*(3-2a)+(9-4a^2)=4
解之得a=1或1/2又0<a<1故舍去1
则a=1/2
综上所述a=5或1或1/2
看了 已知y^2=4a(x-a)(...的网友还看了以下:
(1)x/a+x/b-a+a/a+b(a不等于0,axa不等于bxb)(2)(mx-n)(m+n) 2020-04-07 …
解关于x的不等式x的平方-x-a(a-1)>0,用高一上知识x^2-x-a(a-1)>0x^2+[ 2020-05-23 …
问一道高一指数函数的题目(1)求证:f(x)=(a^x-a^-x)/2(a>0,且a≠1)是奇函数 2020-06-09 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
对于实数集合X,Y,集合X◆Y定义为:X◆Y={x+y|x∈X,y∈Y},集合X◇Y定义为X◇Y= 2020-07-30 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
1.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}(1)若集合A是集合B的真子集, 2020-08-01 …
已知函数y=fx的定义域为0.1求函数gx=f(x+a)+f(x-a){a>o}的定义域答案如下0 2020-08-01 …
我问过这样一道题:设a.b为有理数,且|a|>0,方程||X-a|-b|=3有三个不相等的解,求b 2020-08-02 …
已知集合A={x|-1≤x≤3},B={x|x>a},若A⊊B,则实数a的取值范围组成的集合是()A 2020-11-22 …