早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求证下列行列式(1)a23...n1a+13...n12a+2...n=[a+(n-1)(n-2)](a-1)^(n-1)::::123...a+n-1(2)a+bab0...001a+bab...00n+101a+b...00=∑a^i*b^(n+1-i):::::i=0000a+bab000...1a+b

题目详情
求证下列行列式
(1)a 2 3 ...n
1 a+1 3 ...n
1 2 a+2 ...n = [a+(n-1)(n-2)](a-1)^(n-1)
::::
1 2 3 ...a+n-1
(2)a+b ab 0 ...0 0
1 a+b ab ...0 0 n+1
0 1 a+b ...0 0 = ∑a^i*b^(n+1-i)
:::::i=0
0 0 0 a+b ab
0 0 0 ...1 a+b
▼优质解答
答案和解析
结论都错了.你自己推导的结果吧.
(1)
[a+(n-1)(n+2)/2](a-1)^(n-1)
(2)
(b^(n+1)-a^(n+1))/(b-a)