早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}满足a1=1,an+1-an=2,等比数列{bn}满足b1=a1,b4=a4+1.(1)求数列{an},{bn}的通项公式;(2)设cn=an+bn,求数列{cn}的前n项和Sn.

题目详情
已知数列{an}满足a1=1,an+1-an=2,等比数列{bn}满足b1=a1,b4=a4+1.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和Sn
▼优质解答
答案和解析
(1)由题意可知:an+1-an=2,
∴数列{an}是以1为首项,以2为公差的等差数列,
∴数列{an}的通项公式an=2n-1,
∴a4=7,
由等比数列{bn}公比为q,b4=b1•q3=8,
∴q3=8,q=2,
∴数列{bn}的通项公式bn=2n-1
(2)cn=an+bn=2n-1+2n-1
数列{cn}的前n项和Sn=
(1+2n-1)×n
2
+
1-2n
1-2

=2n+n2-1,
数列{cn}的前n项和Sn=2n+n2-1.