早教吧作业答案频道 -->数学-->
已知等比数列an,前n项和为sn,q不为1,s1,s2,s3.sn为等比数列,求证a1,a2,a3.已知等比数列an,前n项和为sn,q不为1,s1,s2,s3....sn为等比数列,求证a1,a2,a3.....an也为等比数列速度够快的话可以酌情加悬赏
题目详情
已知等比数列an,前n项和为sn,q 不为1,s1,s2,s3.sn为等比数列,求证a1,a2,a3.
已知等比数列an,前n项和为sn,q 不为1,s1,s2,s3....sn为等比数列,求证a1,a2,a3.....an也为等比数列
速度够快的话可以酌情加悬赏分
已知等比数列an,前n项和为sn,q 不为1,s1,s2,s3....sn为等比数列,求证a1,a2,a3.....an也为等比数列
速度够快的话可以酌情加悬赏分
▼优质解答
答案和解析
sn = qs(n-1) 由于 q不为1 所以 {an}为非0数列
sn = qs(n-1) ==> an = (q - 1)s(n-1)(2)
由于{an}为非0数列,显然{sn}也为非0数列.(2)/(1)得
an / a(n - 1) = s(n-1) / s(n-2) = q
得证
sn = qs(n-1) ==> an = (q - 1)s(n-1)(2)
由于{an}为非0数列,显然{sn}也为非0数列.(2)/(1)得
an / a(n - 1) = s(n-1) / s(n-2) = q
得证
看了 已知等比数列an,前n项和为...的网友还看了以下:
(1)用由特殊到一般的方法知:若数列a1,a2,a3,…an从第二项开始每一项与前一项之比的常数为 2020-05-13 …
线性代数定理求证明Q为n*n维方阵由(n-q)*n微矩阵D 和q*n维矩阵C构成则C左乘Q逆将图示 2020-05-16 …
等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3 2020-05-17 …
等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3 2020-06-17 …
等比数列题等比数列an中,已知a1=1,且项数为偶数,若其奇数项之和为85,偶数项之和为170,求 2020-07-30 …
等比数列求公比已知前n项和为Sn,第一项为a1,求公比q.n,Sn,a1已知Sn=a1*(1-q^ 2020-07-30 …
已知命题p:若a>1,则ax>logax恒成立;命题q:等差数列{an}中,m+n=p+q是an+ 2020-08-01 …
1.在等差数列{an}中,若S12=72,则a6+a72.设Sn表示等差数列{an}中的前n项和,已 2020-10-31 …
着急、数学集合!已知集合A={a+b√2|a∈Q,b∈Q},m∈A,n∈A求证:m*n∈A已知集合A 2020-12-19 …
二项式定理题急已知an=1+q+q^2+……+q^(n-1)(n属于正整数,q不等于正负1),An= 2021-01-14 …