早教吧作业答案频道 -->数学-->
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线y=kx(x<0)上,若OA-OB=4,则k的值是.
题目详情
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线y=
(x<0)上,若OA-OB=4,则k的值是______.

| k |
| x |

▼优质解答
答案和解析
作CD⊥x轴于D,CE⊥y轴于E,连结AC、BC,如图,
∵AB为⊙M的直径,
∴∠ACB=90°,
又∵CM⊥AB,
∴△ACB为等腰直角三角形,
∴CA=CB,AB=
BC,
∵∠CAO=∠CBO,
∵在△ACD和△BCE中
,
∴△ACD≌△BCE(AAS),
∴CD=CE,
设C点坐标为(-t,t),A点坐标为(a,0),B点坐标为(0,b),
∵OA-OB=4,即-a-(-b)=4,
∴a=b-4,
∴a2=(b-4)2=b2-8b+16①,
∵AB2=a2+b2,BC2=CE2+BE2,
∴
(a2+b2)=t2+(t-b)2②,
由①②得t2-4-bt+2b=0,
∴(t+2)(t-2)-b(t-2)=0,
∴(t-2)(t+2-b)=0,
而t+2-b≠0,
∴t-2=0,解得t=2,
∴C点坐标为(-2,2),
把C(-2,2)代入y=
得k=-2×2=-4.
故答案为-4.

∵AB为⊙M的直径,
∴∠ACB=90°,
又∵CM⊥AB,
∴△ACB为等腰直角三角形,
∴CA=CB,AB=
| 2 |
∵∠CAO=∠CBO,
∵在△ACD和△BCE中
|
∴△ACD≌△BCE(AAS),
∴CD=CE,
设C点坐标为(-t,t),A点坐标为(a,0),B点坐标为(0,b),
∵OA-OB=4,即-a-(-b)=4,
∴a=b-4,
∴a2=(b-4)2=b2-8b+16①,
∵AB2=a2+b2,BC2=CE2+BE2,
∴
| 1 |
| 2 |
由①②得t2-4-bt+2b=0,
∴(t+2)(t-2)-b(t-2)=0,
∴(t-2)(t+2-b)=0,
而t+2-b≠0,
∴t-2=0,解得t=2,
∴C点坐标为(-2,2),
把C(-2,2)代入y=
| k |
| x |
故答案为-4.
看了 如图,A、B分别是x轴和y轴...的网友还看了以下:
已知Rt△ABC的周长是4+4根号3,斜边上的中线长是2,则S△ABC=?设两条直角边为x、y.因 2020-05-14 …
已知一个圆和Y轴相切,在直线y=x上截得弦长为2√7,且圆心在直线x-3y=0上,求圆的方程.因为 2020-05-16 …
把直线y=-2x向上平移后得到直线AB,且直线AB经过直线AB的解析式是平移则x系数不变所以是y= 2020-05-22 …
设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1,过曲线y=y(x)上任意一点P( 2020-06-12 …
在平面直角坐标系中直线y=x+1和y=-¾x+3交于点A,直线y=x+1交x轴于点B,直线y=-¾ 2020-06-14 …
在平面直角坐标系xoy中,将直线y=kx沿着y轴向下平移三个单位长度后恰好经过B(-3,0)在平面 2020-06-14 …
卢浦大桥拱形可看作抛物线,在大桥截面1:11000的比例图上跨度AB=5cm,拱高OC=0.9cm 2020-06-29 …
几何证明题已知:如图,在长方形ABCD中,AB=6cm,BC=10cm,点E在CD上,以直线AE为 2020-07-21 …
高一知识水平什么叫上凸函数?是不是在图像上,以X=Y为渐近线,线上叫上凸,线下叫下凸?高一知识水平 2020-07-29 …
在一个直径是10厘米的半圆形上以直径为边,画一个最大的三角形,该三角形的面积是平方厘米. 2021-01-16 …