早教吧作业答案频道 -->数学-->
点C为线段AB上的任意一点,分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BEC,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△AC
题目详情
点C为线段AB上的任意一点,分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BEC,CA=CD,CB=CE,∠ACD
与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.
(1)求证:△ACE≌△DCB
(2)判断△AMC与△DPM的形状有何关系并请说明理由
(3)求证:△APC≌△BPC

与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.
(1)求证:△ACE≌△DCB
(2)判断△AMC与△DPM的形状有何关系并请说明理由
(3)求证:△APC≌△BPC

▼优质解答
答案和解析
◆楼主的图与题意不符,在此以正确的图进行证明.
(1)证明:∵∠ACD=∠BCE.
∴∠ACE=∠BCD;(等式的性质)
又AC=DC,EC=BC.(已知)
∴⊿ACE≌⊿DCB(SAS).
(2)⊿AMC与⊿DPM形状相同.
证明:∵⊿ACE≌⊿DCB(已证).
∴∠CAM=∠PDM;又∠AMC=∠DMP.
∴⊿AMC∽⊿DMP,故两个三角形形状相同.
(3)【结论错误,估计是抄题不对.正确的结论为:∠APC=∠BPC.】
证明:∵⊿ACE≌⊿DCB(已证).
∴点C到AE和DB的距离相等.(全等三角形对应边上的高相等)
故:∠APC=∠BPC.(到角两边距离相等的点在这个角的平分线上)
(1)证明:∵∠ACD=∠BCE.
∴∠ACE=∠BCD;(等式的性质)
又AC=DC,EC=BC.(已知)
∴⊿ACE≌⊿DCB(SAS).
(2)⊿AMC与⊿DPM形状相同.
证明:∵⊿ACE≌⊿DCB(已证).
∴∠CAM=∠PDM;又∠AMC=∠DMP.
∴⊿AMC∽⊿DMP,故两个三角形形状相同.
(3)【结论错误,估计是抄题不对.正确的结论为:∠APC=∠BPC.】
证明:∵⊿ACE≌⊿DCB(已证).
∴点C到AE和DB的距离相等.(全等三角形对应边上的高相等)
故:∠APC=∠BPC.(到角两边距离相等的点在这个角的平分线上)
看了 点C为线段AB上的任意一点,...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
在平面直角坐标系xoy中,已知c:x^2/3+y^2=1,斜率为k(k>0)且不过原点的直线L交椭 2020-05-13 …
已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)( 2020-05-15 …
在平面直角坐标系xOy中,已知椭圆C:,如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A 2020-06-08 …
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半 2020-06-12 …
在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点 2020-06-15 …
已知,AB切⊙C于点B,tan∠BAC=1/2,⊙C的半径为6,点D为⊙C上一动点,连接AD,BD 2020-06-21 …
如图点F1(-c,0)F2(c,0)分别是椭圆C(a>b>0)的左右焦点,点F1(-c,0)F2 2020-06-21 …
如图1,顶点为B(r,t+6),的抛物线y=ax2+bx+c过点A(0,6),t≠0,连接AB,P 2020-07-26 …
动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,A 2020-08-02 …