早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f(x)=x的平方+px+q,证明|f(1)|,|f(2)|f(3)|中至少有一个不小于二分之一 请用反证法详细证明,可加分奥

题目详情
f(x)=x的平方+px+q,证明|f(1)|,|f(2)|f(3)|中至少有一个不小于二分之一 请用反证法详细证明,可加分奥

▼优质解答
答案和解析
证明:假设|f(1)|、|f(2)|、|f(3)|都小于1/2,即
|m+n+1|<1/2
|2m+n+4|<1/2
|3m+n+9|<1/2
所以|m+n+1|+2|2m+n+4|+|3m+n+9|<2
又|m+n+1|+2|2m+n+4|+|3m+n+9|≥|m+n+1+3m+n+9|+|4m+2n+8|
=|4m+2n+10|+|4m+2n+8|≥|4m+2n+10-(4m+2n+8)|=2
所以|m+n+1|+2|2m+n+4|+|3m+n+9|≥2,即原假设有误
所以|f(1)|、|f(2)|、|f(3)|至少有一个不小于1/2