早教吧作业答案频道 -->数学-->
线性代数内积已知:f属于span{1,sin(x),cos(x)},=1/pi(积分f(x)g(x)dx,从-pi到pi)求||cos(2x)-f(x)||的最小值我唯一一点儿思路就是有个定理||u+v||有一点翻译错了,是求f的方程当||cos(2x)-f(x)||最小
题目详情
线性代数 内积
已知:f属于span{1,sin(x),cos(x)},=1/pi (积分f(x)g(x)dx,从-pi到pi)
求||cos(2x)-f(x)||的最小值
我唯一一点儿思路就是有个定理||u+v||
有一点翻译错了,是求f的方程当||cos(2x)-f(x)||最小

已知:f属于span{1,sin(x),cos(x)},=1/pi (积分f(x)g(x)dx,从-pi到pi)
求||cos(2x)-f(x)||的最小值
我唯一一点儿思路就是有个定理||u+v||
有一点翻译错了,是求f的方程当||cos(2x)-f(x)||最小

▼优质解答
答案和解析
我想范数||f||应该是为内积的平方根吧?
设f(x)=a×sinx+b×cosx+c,a,b,c是任一实数,||cos2x-f(x)||^2=1/π×∫(-π到π) (cos2x-f(x))^2dx=1/π×∫(-π到π) (cos2x-asinx-bcosx-c)^2dx.
因为1,sinx,cosx,cos2x在[-π,π]上是正交的,所以||cos2x-f(x)||^2=1/π×∫(-π到π) [(cos2x)^2+(sinx)^2+(bcosx)^2+c^2]dx=1+(a^2+b^2+2c^2)π^2
最小值很明显是a=b=c=0时,此时f(x)=0,最小值是1
设f(x)=a×sinx+b×cosx+c,a,b,c是任一实数,||cos2x-f(x)||^2=1/π×∫(-π到π) (cos2x-f(x))^2dx=1/π×∫(-π到π) (cos2x-asinx-bcosx-c)^2dx.
因为1,sinx,cosx,cos2x在[-π,π]上是正交的,所以||cos2x-f(x)||^2=1/π×∫(-π到π) [(cos2x)^2+(sinx)^2+(bcosx)^2+c^2]dx=1+(a^2+b^2+2c^2)π^2
最小值很明显是a=b=c=0时,此时f(x)=0,最小值是1
看了 线性代数内积已知:f属于sp...的网友还看了以下:
求助一道y.b题:x=100fori=1to100step5x=x-i\6nexti求执行后x的值 2020-04-26 …
已知f(x)=log31/4-x,x属于I-5,35/9I(1)求f(x)关于点(2,1)对称的函 2020-05-23 …
直线y1=2x+b与x,y轴交于A.B,与双曲线y2=k/x(xy2已求得y1=2x+6y2=-4 2020-07-15 …
1.已知3i-2是方程x^2+ax+b=0的一个根,求实数a,b的值2.已知复数z=1/i+1求z 2020-07-30 …
求一不等式证明.已知:x,y,z>=0,x+y+z=6.求证:(x+1/x)(y+1/y)(z+1/ 2020-10-31 …
1.已知复数Z=1-i/1+i,则|Z+1|的值为.2.f(x)=2x×tanx...1.已知复数Z 2020-11-01 …
若Iy-3I+(x+1)x(x+i)=0求:yyyx-yyxxx-2yx+3yyxxx= 2020-11-01 …
复数练习已知x,y∈R且满足(x-3)i-y+2-6i(1-i)=0求x,y已知复数Z1,Z2满足Z 2020-11-01 …
(口ivi•揭阳一模)已知复数zv=si下口x+λi,z口=m+(m−3cos口x)i(λ,m,x∈ 2020-11-12 …
(五ii8•静安区一模)已知a>i,函数上(x)=x|x-a|+1(x∈i).(1)当a=1时,求所 2020-12-08 …