早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)=x^2+2(a-2)x+41.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围

题目详情
已知f(x)=x^2+2(a-2)x+4
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
▼优质解答
答案和解析
f(x)为开口向上的抛物线,对称轴为x= 2 - a,顶点(2 - a,4 - (a - 2)²)
(1) 如果对一切x∈R,f(x) >0恒成立,则4 - (a - 2)² > 0,a(a - 4) < 0,0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1,3],1 ≤ 2 - a ≤ 3,-1 ≤ a ≤ 1
4 - (a - 2)² > 0,0 < a < 4
结合前提:0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1,a > 1
此时[1,3]在对称轴右侧,f(x) > 0,只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提,a > 1
(iii)对称轴x = 2 - a > 3,a < -1
此时[1,3]在对称轴左侧,f(x) > 0,只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提:-1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合:a > 0