早教吧作业答案频道 -->数学-->
已知f(x)=x^2+2(a-2)x+41.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
题目详情
已知f(x)=x^2+2(a-2)x+4
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
▼优质解答
答案和解析
f(x)为开口向上的抛物线,对称轴为x= 2 - a,顶点(2 - a,4 - (a - 2)²)
(1) 如果对一切x∈R,f(x) >0恒成立,则4 - (a - 2)² > 0,a(a - 4) < 0,0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1,3],1 ≤ 2 - a ≤ 3,-1 ≤ a ≤ 1
4 - (a - 2)² > 0,0 < a < 4
结合前提:0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1,a > 1
此时[1,3]在对称轴右侧,f(x) > 0,只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提,a > 1
(iii)对称轴x = 2 - a > 3,a < -1
此时[1,3]在对称轴左侧,f(x) > 0,只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提:-1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合:a > 0
(1) 如果对一切x∈R,f(x) >0恒成立,则4 - (a - 2)² > 0,a(a - 4) < 0,0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1,3],1 ≤ 2 - a ≤ 3,-1 ≤ a ≤ 1
4 - (a - 2)² > 0,0 < a < 4
结合前提:0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1,a > 1
此时[1,3]在对称轴右侧,f(x) > 0,只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提,a > 1
(iii)对称轴x = 2 - a > 3,a < -1
此时[1,3]在对称轴左侧,f(x) > 0,只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提:-1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合:a > 0
看了 已知f(x)=x^2+2(a...的网友还看了以下:
还是高中导数题.1:f(x)=lnx+(a/根号下ax)-lna(a>0x>0)求证f(x)>0对 2020-05-14 …
f(x)的定义域为R+,对任意x,y∈R+恒有f(xy)=f(x)+f(y)设f^-1(x)是f( 2020-06-05 …
已知函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求a的范围.(2)当x∈[ 2020-06-11 …
若函数y=fx对任意x,y属于R,恒有f(x+y)=f(x)+f(y).1如果x大于0时,f(x) 2020-06-11 …
设函数f(x)在(0,+无穷)上满足f(x)=f(x^2)且limf(x)(x->0+)=limf 2020-07-20 …
证明做匀变速直线运动的物体,任意两个连续相等的时间间隔T内的位移之差⊿x是一恒量,且有⊿x=aT2、 2020-11-08 …
数学分析习题设函数f的定义域为R,不恒为0,且对一切x,y∈R满足①f(x+y)=f(x)+f(y) 2020-11-20 …
设f(x)是定义在(0,正无穷大)上的非常函数(高一)对于任意的x>0,y>0,恒有f(xy)=f( 2020-12-07 …
已知f(x)是定义在实数集上恒不为0的函数,对任意实数x,y,f(x)f(y)=f(x+y),当x> 2020-12-27 …
已知函数f(x)(x∈R,且x>0),对于定义域内任意x、y恒有f(xy)=f(x)+f(y),并且 2020-12-27 …