早教吧作业答案频道 -->数学-->
已知f(x)=x^2+2(a-2)x+41.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
题目详情
已知f(x)=x^2+2(a-2)x+4
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
▼优质解答
答案和解析
f(x)为开口向上的抛物线,对称轴为x= 2 - a, 顶点(2 - a, 4 - (a - 2)²)
(1) 如果对一切x∈R,f(x) >0恒成立, 则4 - (a - 2)² > 0, a(a - 4) < 0, 0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1, 3], 1 ≤ 2 - a ≤ 3, -1 ≤ a ≤ 1
4 - (a - 2)² > 0, 0 < a < 4
结合前提: 0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1, a > 1
此时[1,3]在对称轴右侧,f(x) > 0, 只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提, a > 1
(iii)对称轴x = 2 - a > 3, a < -1
此时[1,3]在对称轴左侧, f(x) > 0, 只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提: -1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合: a > 0
(1) 如果对一切x∈R,f(x) >0恒成立, 则4 - (a - 2)² > 0, a(a - 4) < 0, 0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1, 3], 1 ≤ 2 - a ≤ 3, -1 ≤ a ≤ 1
4 - (a - 2)² > 0, 0 < a < 4
结合前提: 0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1, a > 1
此时[1,3]在对称轴右侧,f(x) > 0, 只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提, a > 1
(iii)对称轴x = 2 - a > 3, a < -1
此时[1,3]在对称轴左侧, f(x) > 0, 只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提: -1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合: a > 0
看了 已知f(x)=x^2+2(a...的网友还看了以下:
已知集合A={x|x²+4x=0},B={x|x²+2(a+1)-1=0,a∈R},如果B⊆A,求 2020-04-05 …
填空:1.如果1/2x=0.5,那么x=,这是根据来做的2.如果-5x+6=1-6x,那么x=,这 2020-05-21 …
请问一道偏微分的题设f(x,y)=xy(x^2-y^2)/(x^2+y^2)当x^2+y^20时. 2020-06-07 …
sin0的导数是先求导变cos还是先算sin0=0如果是先算sin0=0再求导的话为什么泰勒公式中 2020-06-10 …
如果f(x)-f(-x)/x存在那么f(0)的导数存在如果limx趋近于0f(x)-f(-x)/x 2020-06-10 …
(x-2)(x-1)≥0怎么解是(x-2)≥0且(x-1)≥0或者(x-2)≤0且(x-1)≤0吗 2020-06-14 …
若f(x)是奇函数,定义域为R,则f(0)=0为什么我看到有的答案是这样的“如果f(x)是定义域为 2020-06-17 …
高一不等式,1.如果x>0,y>0,xy=9,则x+y的最小值是?2.如果x>0,y>0,x+y=8 2020-11-01 …
英语翻译书上是怎么说的他给你一个一元三次图,左边是波峰值是:(x=-3);右边是:波谷值是:(x=1 2020-12-15 …
一元两次不等式解法例如这一题是:x²-4x+3≥0解开后变为(x-3)(x-1)≥0那么后面的解法如 2021-01-22 …