早教吧作业答案频道 -->数学-->
已知f(x)=x^2+2(a-2)x+41.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
题目详情
已知f(x)=x^2+2(a-2)x+4
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
1.如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.2.如果对x∈[1,3],f(x)>0恒成立,求实数a的取值范围
▼优质解答
答案和解析
f(x)为开口向上的抛物线,对称轴为x= 2 - a, 顶点(2 - a, 4 - (a - 2)²)
(1) 如果对一切x∈R,f(x) >0恒成立, 则4 - (a - 2)² > 0, a(a - 4) < 0, 0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1, 3], 1 ≤ 2 - a ≤ 3, -1 ≤ a ≤ 1
4 - (a - 2)² > 0, 0 < a < 4
结合前提: 0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1, a > 1
此时[1,3]在对称轴右侧,f(x) > 0, 只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提, a > 1
(iii)对称轴x = 2 - a > 3, a < -1
此时[1,3]在对称轴左侧, f(x) > 0, 只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提: -1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合: a > 0
(1) 如果对一切x∈R,f(x) >0恒成立, 则4 - (a - 2)² > 0, a(a - 4) < 0, 0 < a < 4
(2)
(i) 对称轴x = 2 - a ∈[1, 3], 1 ≤ 2 - a ≤ 3, -1 ≤ a ≤ 1
4 - (a - 2)² > 0, 0 < a < 4
结合前提: 0 < a ≤ 1
(ii) 对称轴x = 2 - a < 1, a > 1
此时[1,3]在对称轴右侧,f(x) > 0, 只须f(1) > 0
f(1) = 1 + 2(a - 2) + 4 = 2a + 1 >0
a > -1/2
结合前提, a > 1
(iii)对称轴x = 2 - a > 3, a < -1
此时[1,3]在对称轴左侧, f(x) > 0, 只须f(3) > 0
f(3) = 9 + 6(a - 2) + 4 = 1 + 6a > 0
a > 1/6
结合前提: -1/2 < a < 1
与a < -1矛盾,此时无解.
(i)(ii)(iii)结合: a > 0
看了 已知f(x)=x^2+2(a...的网友还看了以下:
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π2的部分图象如图所示.( 2020-04-12 …
已知f:x→-sinx是集合A(A∈[0,2π])到集合B={0,1/2}的映射则集合A中元素个数 2020-05-15 …
已知一组数据:-1,x,0,1,-2的平均数是0,则-2,2x,0,2,-4这组数据的方差是() 2020-05-20 …
已知:如图,直线y=x-1交x轴、y轴于点A、B.直线y=-0.5x+2交x轴、y轴于点C、D,两 2020-05-23 …
在直角坐标系中有3点A(0,-1),B(1,3),C(2,6).已知直线Y=AX+B上,横坐标为0 2020-06-14 …
已知函数y=Asin(ωx+φ)(A>0,|φ|<π/2)的图像上的一个最低点是(-6,-√2)由 2020-06-27 …
SOS已知函数f(x)=sin二分之x乘以cos二分之x+cos²x-2(1)将函数f(x)化简成 2020-07-09 …
(1)阅读理解我们知道,正方形面积越大,其边长也越大,即如果0<a<b,那么0<√a<√b因为1² 2020-07-20 …
已知椭圆C:x2a2+y2b2=1(a>b>0)和圆O:x2+y2=a2,F1(-1,0),F2( 2020-07-22 …
已知2的立方=8,则8的立方根=2,0.2的立方=0.008,则0.008的立方=0.2,0.02 2020-08-02 …