早教吧作业答案频道 -->数学-->
已知函数f(x)=log2g(x)+(k-1)x.(1)若g(log2x)=x+1,且f(x)为偶函数,求实数k的值;(2)当k=1,g(x)=ax2+(a+1)x+a时,若函数f(x)的值域为R,求实数a的取值范围.
题目详情
已知函数f(x)=log2g(x)+(k-1)x.
(1)若g(log2x)=x+1,且f(x)为偶函数,求实数k的值;
(2)当k=1,g(x)=ax2+(a+1)x+a时,若函数f(x)的值域为R,求实数a的取值范围.
(1)若g(log2x)=x+1,且f(x)为偶函数,求实数k的值;
(2)当k=1,g(x)=ax2+(a+1)x+a时,若函数f(x)的值域为R,求实数a的取值范围.
▼优质解答
答案和解析
(1)令t=log2x,则x=2t,代入g(log2x)=x+1,
∴g(t)=2t+1,
∴f(x)=log2(2x+1)+(k-1)x,
由函数f(x)为偶函数,
∴f(-x)=f(x),
∴log2(2x+1)+(k-1)x=log2(2-x+1)-(k-1)x,
∴x=-2(k-1)x,对一切x∈R恒成立,
∴2(k-1)=-1,
∴k=
,
(2)k=1,f(x)=log2[ax2+(a+1)x+a],
当a≠0时,要使函数f(x)的值域为R,
要求一元二次方程:ax2+(a+1)x+a=0,
∴
,即
,
解得:0<a≤1,
当a=0时,f(x)=log2x,函数f(x)的值域为R,
综合可知:实数a的取值范围[0,1].
∴g(t)=2t+1,
∴f(x)=log2(2x+1)+(k-1)x,
由函数f(x)为偶函数,
∴f(-x)=f(x),
∴log2(2x+1)+(k-1)x=log2(2-x+1)-(k-1)x,
∴x=-2(k-1)x,对一切x∈R恒成立,
∴2(k-1)=-1,
∴k=
1 |
2 |
(2)k=1,f(x)=log2[ax2+(a+1)x+a],
当a≠0时,要使函数f(x)的值域为R,
要求一元二次方程:ax2+(a+1)x+a=0,
∴
|
|
解得:0<a≤1,
当a=0时,f(x)=log2x,函数f(x)的值域为R,
综合可知:实数a的取值范围[0,1].
看了 已知函数f(x)=log2g...的网友还看了以下:
已知二次函数f(x)=ax2+bx满足条件:①对任意x∈R,均有f(x-4)=f(2-x)②函数f 2020-05-13 …
对于函数f(x)=ax2+b|x-m|+c(其中a、b、m、c为常数,x∈R),有下列三个命题:( 2020-05-13 …
设函数f(x)=ax2+bx+c(a>0),满足f(1-x)=f(1+x),则f(2x)与f(3x 2020-07-13 …
定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f()≤[f(x1)+f(x2)],则 2020-07-29 …
已知函数f(x)=ax2+4/x+c是奇函数,且f(1﹚=5(1)求f(x)的解析式(2)判断函数 2020-08-01 …
已知二次函数f(x)=ax2+bx+c满足条件:①f(3-x)=f(x);②f(1)=0;③对任意 2020-08-02 …
已知函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),对任意的x∈R,都有f(x-4)=f( 2020-11-01 …
1.已知函数y=x2-4ax(1≤x≤3)是单调递增函数,则实数a的取值范围是?2.已知函数g(x) 2020-11-24 …
已知函数f(x)=x3,x≤ax2,x>a.若存在实数b,使函数g(x)=f(x)-b有两个零点,则 2020-12-26 …
已知函数f(x)=,函数g(x)=ax2﹣x+1,若函数y=f(x)﹣g(x)恰好有2个不同零点,则 2020-12-26 …