早教吧作业答案频道 -->其他-->
(理)已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)=loga|x|只有4个零点,则a取值范围是(3,5)∪(15,13)(3,5)∪(15,13).
题目详情
(理)已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)=loga|x|只有4个零点,则a取值范围是
(3,5)∪(
,
)
| 1 |
| 5 |
| 1 |
| 3 |
(3,5)∪(
,
)
.| 1 |
| 5 |
| 1 |
| 3 |
▼优质解答
答案和解析
∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴函数y=f(x)是以4为周期的函数,
又当-1≤x<1时,f(x)=x3,
∴当1≤x<3时,-1≤x-2<1,
∴f(x)=-f(x-2)=-(x-2)3;
∵g(-x)=loga|-x|=loga|x|=g(x),
∴g(x)=loga|x|为偶函数,

又g(x)=f(x)=loga|x|只有4个零点,
∴当a>1时,loga3<1<loga5,如图,解得3<a<5;
当0<a<1时,loga5<-1<loga3<0,同理解得
<a<
;
∴实数a的取值范围是(3,5)∪(
,
).
故答案为:(3,5)∪(
,
).
∴f(x+4)=-f(x+2)=f(x),
∴函数y=f(x)是以4为周期的函数,
又当-1≤x<1时,f(x)=x3,
∴当1≤x<3时,-1≤x-2<1,
∴f(x)=-f(x-2)=-(x-2)3;
∵g(-x)=loga|-x|=loga|x|=g(x),
∴g(x)=loga|x|为偶函数,

又g(x)=f(x)=loga|x|只有4个零点,
∴当a>1时,loga3<1<loga5,如图,解得3<a<5;
当0<a<1时,loga5<-1<loga3<0,同理解得
| 1 |
| 5 |
| 1 |
| 3 |
∴实数a的取值范围是(3,5)∪(
| 1 |
| 5 |
| 1 |
| 3 |
故答案为:(3,5)∪(
| 1 |
| 5 |
| 1 |
| 3 |
看了 (理)已知定义在R上的函数y...的网友还看了以下:
点A是反比例函数y=2/x(x>0)的图象上的任意一点,AB∥x轴交反比例函数y=-3/x的图像于 2020-04-08 …
已知函数f(x)=x+根号2/x的定义域为(0,+),设点P是函数f(x)图象上的任意一点已知函数 2020-05-12 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
f'(0)=2,则lim(x→0)[f(5x)-f(x)]/x若f(x)在x=0处可导,且f'(0 2020-06-12 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
已知曲线C1:f(x)=x^2+e^2,C2:g(x)=2e^2lnx(1)证明;当x>0时,f( 2020-08-01 …
x=1/n(n=2,3,……)是函数f(x)=x*[1/x]的([]为取整函数)()A,无穷间断点B 2020-11-22 …
对于函数y=f(x)若f(x)=x,则称x为函数y=f(x)的不动点,对于函数y=f(x),若f[f 2020-12-08 …