早教吧作业答案频道 -->数学-->
高一数学题1.设x≥0时,f(x)=2,当x<0时,f()=1.g(x)=3f(x-1)-f(x-2)2(x>0),写出y=g(x)的表达式.2.已知f(x+1)=x²-3x+2,求f(2)和f(a)的值,求f(x)的解析式3.已知f(x)=x²-mx+n,f
题目详情
高一数学题
1.设x≥0时,f(x)=2,当x<0时,f()=1.g(x)=3f(x-1)-f(x-2)2(x>0),写出y=g(x)的表达式.
2.已知f(x+1)=x²-3x+2,求f(2)和f(a)的值,求f(x)的解析式
3.已知f(x)=x²-mx+n,f(1)=-1,求f(x)的解析式和f(-5)的值
4.已知f(f(x))
=3x+5,求f(x)解析式
5.已知2f(x)+f(x1)=3x,求f(x)解析式
6.已知f(x)是一次函数,且3f(x+1)-2f(x-1)=2x+17,求f(x)
7.已知函数f(x)是二次函数,f(0)=0,且f(x+1)=f(x)+x+1,求f(x)的表达式
要详细过程,能答几个算几个 好的加分
1.设x≥0时,f(x)=2,当x<0时,f()=1.g(x)=3f(x-1)-f(x-2)2(x>0),写出y=g(x)的表达式.
2.已知f(x+1)=x²-3x+2,求f(2)和f(a)的值,求f(x)的解析式
3.已知f(x)=x²-mx+n,f(1)=-1,求f(x)的解析式和f(-5)的值
4.已知f(f(x))
=3x+5,求f(x)解析式
5.已知2f(x)+f(x1)=3x,求f(x)解析式
6.已知f(x)是一次函数,且3f(x+1)-2f(x-1)=2x+17,求f(x)
7.已知函数f(x)是二次函数,f(0)=0,且f(x+1)=f(x)+x+1,求f(x)的表达式
要详细过程,能答几个算几个 好的加分
▼优质解答
答案和解析
1.题不太清楚(f(x-2)2?),假定为g(x)=3f(x-1)- f(x-2) (x>0)
a.x ≥ 2:x - 1 ≥ 0,x - 2 ≥0,g(x) = 3f(x-1) -f(x-2) = 3*2 - 2 = 4
b.2 > x ≥ 1:x - 1 ≥ 0,x - 2 < 0,g(x) = 3f(x-1) -f(x-2) = 3*2 - 1 = 5
c.0 < x < 1:x - 1 < 0,x - 2 < 0,g(x) = 3f(x-1) -f(x-2) = 3*1 - 1 = 2
d.x ≤ 0:按题,无定义.
2.令t = x+1,x = t -1,f(x+1)=x²-3x+2
f(t) = (t-1)^2 -3(t-1) + 2 = t^2 -5t +6
f(x) = x^2 -5x +6
f(2) = 2^2 -5*2 + 6 = 0
f(a) = a^2 -5a + 6
3.似乎题不全.
f(1) = 1 - m + n = -1,n = m-2
f(x) = x^2 -mx + m-2
f(-5) = 25 -5m +m -2 = 23 -4m
4.f(x) 为一次函数,设为f(x) = mx + n
f(f(x)) = mf(x) + n = m(mx + n) + n = m²x + n(m+1) = 3x + 5
m² = 3,n(m+1) = 5
解为:m = √3,n = 5(1-√3)/2,f(x)= √3x + 5(1-√3)/2
或:m = -√3,n = -5(1+√3)/2,f(x) = -√3x - 5(1+√3)/2
5.题有问题
6.f(x) 为一次函数,设为f(x) = mx + n
f(x+1) = m(x+1) + n = mx + m + n
f(x -1) = m(x-1) + n = mx -m + n
3f(x+1) -2f(x-1) = 3(mx + m + n) - 2(mx -m + n) = mx +5m + n = 2x + 17
m = 2,n = 7
f(x) = 2x + 7
7.函数f(x)是二次函数,设为f(x) = ax² + bx + c (a ≠ 0)
f(0) = c = 0
f(x) = ax² + bx
f(x+1) = a(x+1)² + b(x+1) = ax² + 2ax + a + bx + b = ax² + (2a+b)x + a + b (1)
f(x+1) = f(x) + x+1 = ax² + bx + x + 1 = ax² + (b+1)x + 1 (2)
比较(1)(2):
2a + b = b + 1
a + b = 1
a = 1/2,b = 1/2
f(x) = (x² + x)/2
a.x ≥ 2:x - 1 ≥ 0,x - 2 ≥0,g(x) = 3f(x-1) -f(x-2) = 3*2 - 2 = 4
b.2 > x ≥ 1:x - 1 ≥ 0,x - 2 < 0,g(x) = 3f(x-1) -f(x-2) = 3*2 - 1 = 5
c.0 < x < 1:x - 1 < 0,x - 2 < 0,g(x) = 3f(x-1) -f(x-2) = 3*1 - 1 = 2
d.x ≤ 0:按题,无定义.
2.令t = x+1,x = t -1,f(x+1)=x²-3x+2
f(t) = (t-1)^2 -3(t-1) + 2 = t^2 -5t +6
f(x) = x^2 -5x +6
f(2) = 2^2 -5*2 + 6 = 0
f(a) = a^2 -5a + 6
3.似乎题不全.
f(1) = 1 - m + n = -1,n = m-2
f(x) = x^2 -mx + m-2
f(-5) = 25 -5m +m -2 = 23 -4m
4.f(x) 为一次函数,设为f(x) = mx + n
f(f(x)) = mf(x) + n = m(mx + n) + n = m²x + n(m+1) = 3x + 5
m² = 3,n(m+1) = 5
解为:m = √3,n = 5(1-√3)/2,f(x)= √3x + 5(1-√3)/2
或:m = -√3,n = -5(1+√3)/2,f(x) = -√3x - 5(1+√3)/2
5.题有问题
6.f(x) 为一次函数,设为f(x) = mx + n
f(x+1) = m(x+1) + n = mx + m + n
f(x -1) = m(x-1) + n = mx -m + n
3f(x+1) -2f(x-1) = 3(mx + m + n) - 2(mx -m + n) = mx +5m + n = 2x + 17
m = 2,n = 7
f(x) = 2x + 7
7.函数f(x)是二次函数,设为f(x) = ax² + bx + c (a ≠ 0)
f(0) = c = 0
f(x) = ax² + bx
f(x+1) = a(x+1)² + b(x+1) = ax² + 2ax + a + bx + b = ax² + (2a+b)x + a + b (1)
f(x+1) = f(x) + x+1 = ax² + bx + x + 1 = ax² + (b+1)x + 1 (2)
比较(1)(2):
2a + b = b + 1
a + b = 1
a = 1/2,b = 1/2
f(x) = (x² + x)/2
看了 高一数学题1.设x≥0时,f...的网友还看了以下:
已知函数f(x)=2acosx+bsinxcosx,f(0)=2,f(派/3)=1/2+根号3/2 2020-05-15 …
1、已知函数f(x)的定义域是[0,1]。求f(x-2),f(x-1),f(2x-2)的定义域。变 2020-05-17 …
奇函数的对称轴如果f(2-x)=f(2+x),f(7-x)=f(7+x),所以函数的关于x=2或者 2020-05-19 …
设f(x)是定义域在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x属于[0,2] 2020-06-09 …
设函数f(X)在负无穷到正无穷上满足f(2-X)=f(2+x),f(7-x)=f(7+x),且在闭 2020-06-14 …
关于不定积分的两个问题1.如何求∫arcsinxd√(1-x^2)2.f'(x)是对y=f(x)求 2020-07-22 …
1.已知二次函数f(x)满足f(2+x)=f(2-x),且图象在y轴上的截距为1,被x轴截得的线段 2020-07-30 …
若偶函数f(x)在x≤-1上是增函数,则下列关系中成立的是a.f(2)<f(-3/2)<f(-1) 2020-08-01 …
已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),f(3/2-x)=f(x)f 2020-08-01 …
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),求f(6)的值由f(x+2)=-f(x) 2020-11-19 …