早教吧作业答案频道 -->数学-->
如图1,B(-1,0),D(0,2),经过点C(3,0)的直线EC交直线BD于A,交y轴于E,使AD=AE(1)求证:AB=AC(2)如图2,△ABC沿x轴方向平行移动时,AB交y轴于D,直线DF交AC延长线于F,交x轴于G且BD=
题目详情
如图1,B(-1,0),D(0,2),经过点C(3,0)的直线EC交直线BD于A,交y轴于E,使AD=AE
(1)求证:AB=AC
(2)如图2,△ABC沿x轴方向平行移动时,AB交y轴于D,直线DF交AC延长线于F,交x轴于G且BD=CF,求证:OG长度不变.

(1)求证:AB=AC
(2)如图2,△ABC沿x轴方向平行移动时,AB交y轴于D,直线DF交AC延长线于F,交x轴于G且BD=CF,求证:OG长度不变.

▼优质解答
答案和解析
(1)∵AD=AE,
∴∠AED=∠ADE,
∵∠ECO+∠AED=90°,∠DBO+∠BDO=90°,∠ADE=∠BDO,
∴∠ECO=∠DBO,
∴AB=AC;
(2)过F作FE⊥x轴于E,由(1)知∠1=∠2,
∵∠2=∠3,
∴∠1=∠3,
在△BDO与△CEF中,
,
∴△BOD≌△CEF,
∴BO=CE,DO=EF,
在△DOG与△FEG中,
,
∴△DOG≌△FEG,
∴OG=GE,
∴OG=
OE,
∵BO=CE,
∴BO+OC=CE+OC,
即BC=OE,
∴OG=
OE=
BC=
×4=2,
即OG不变.
(1)∵AD=AE,∴∠AED=∠ADE,
∵∠ECO+∠AED=90°,∠DBO+∠BDO=90°,∠ADE=∠BDO,
∴∠ECO=∠DBO,
∴AB=AC;
(2)过F作FE⊥x轴于E,由(1)知∠1=∠2,
∵∠2=∠3,
∴∠1=∠3,
在△BDO与△CEF中,
|
∴△BOD≌△CEF,
∴BO=CE,DO=EF,
在△DOG与△FEG中,
|
∴△DOG≌△FEG,
∴OG=GE,
∴OG=
| 1 |
| 2 |
∵BO=CE,
∴BO+OC=CE+OC,
即BC=OE,
∴OG=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
即OG不变.
看了 如图1,B(-1,0),D(...的网友还看了以下:
如何证明抽象函数f(a-x)和抽象函数f(a+x)的对称轴是a轴如何证明抽象函数f(a-x)和抽象 2020-04-05 …
已知二次函数F(x)=a(a+1)x*X-(2a+1)x+1,a∈N+1.求函数F(X)的图像与X 2020-05-13 …
已知在平面直角坐标系中直线AB,CD分别与X轴,Y轴交于A,B,C,D,点A(-2,0)B(0,3 2020-05-15 …
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式 2020-05-15 …
若曲线y=f(x)=x³-3ax²-3a²+a (a大于0)上有两点A(m,f(m)) B(n,f 2020-05-17 …
sinA=√5/5sin(A+B)=-√10/10A,B属于(0,π/2)求B若曲线y=f(x)= 2020-05-20 …
1)已知f(x)=ax的平方+bx+c满足f(1)=0,a>b>c①求c/a的取值范围②若该函数图 2020-05-20 …
函数对称问题f(x-a)=f(x+a)与f(a-x)=f(a+x)的对称轴到底谁的是x=a?要求说 2020-06-08 …
高三数学积分!求解!一·已知f(a)=∫(1上0下)(2ax^2-a^2x)dx,求f(a)的最大 2020-08-02 …
已知函数f(x)=lnx-ax.(Ⅰ)若函数f(x)在x=1处的切线与x轴平行,求a的值;(Ⅱ)若a 2020-12-08 …