早教吧作业答案频道 -->数学-->
若曲线y=f(x)=x³-3ax²-3a²+a (a大于0)上有两点A(m,f(m)) B(n,f(n)) 处的切线都与y轴垂直,且函数y=f(x)在区间[m,n]上存在零点、求a的范围我只找到了因为切线垂直于Y轴,则导数值在这两点应该
题目详情
若曲线y=f(x)=x³-3ax²-3a²+a (a大于0)上有两点A(m,f(m)) B(n,f(n)) 处的切线都与y轴垂直,且函数y=f(x)在区间[m,n]上存在零点、求a的范围
我只找到了因为切线垂直于Y轴,则导数值在这两点应该为0.
即3m²-6am=0和3n²-6an=0
然后因为有零点所以f(m)·f(n)≤0
还能发掘出什么条件啊
我只找到了因为切线垂直于Y轴,则导数值在这两点应该为0.
即3m²-6am=0和3n²-6an=0
然后因为有零点所以f(m)·f(n)≤0
还能发掘出什么条件啊
▼优质解答
答案和解析
有两处的切线都与y轴垂直,就意味着函数有两个点的导数是零
f'(x)=3x²-6ax=0,这个函数有两个根,x=0,和x=2a
函数y=f(x)在区间[m,n]上存在零点,意味着这个函数在x=m和x=n处异号
也就是f(0)f(2a)≤0
f(0)=-3a²+a
f(2a)=8a³-12a³-3a²+a=-4a³-3a²+a
f(0)f(2a)=(-3a²+a)(-4a³-3a²+a)=a²(3a-1)(4a²+3a-1)
=a²(4a-1)(a+1)(3a-1)≤0
得这个不等式共有a=-1,a=0,a=0,a=1/4,a=1/3
由穿根法,可知这个不等式的解集是(负无穷,-1)∪[1/4,1/3]
又因为a>0,所以a 的范围是[1/4,1/3]
f'(x)=3x²-6ax=0,这个函数有两个根,x=0,和x=2a
函数y=f(x)在区间[m,n]上存在零点,意味着这个函数在x=m和x=n处异号
也就是f(0)f(2a)≤0
f(0)=-3a²+a
f(2a)=8a³-12a³-3a²+a=-4a³-3a²+a
f(0)f(2a)=(-3a²+a)(-4a³-3a²+a)=a²(3a-1)(4a²+3a-1)
=a²(4a-1)(a+1)(3a-1)≤0
得这个不等式共有a=-1,a=0,a=0,a=1/4,a=1/3
由穿根法,可知这个不等式的解集是(负无穷,-1)∪[1/4,1/3]
又因为a>0,所以a 的范围是[1/4,1/3]
看了 若曲线y=f(x)=x³-3...的网友还看了以下:
设f:A→B是集合A到B的映射,下列说法正确的是( )(A)A中不同元素在B中必有不同的元素与它对 2020-05-15 …
边长为0.1m质量均匀的正方体物体M,放在水平地面上对地面的压强为5.4×103 Pa.如图所示装 2020-05-17 …
问一道高一指数函数的题目(1)求证:f(x)=(a^x-a^-x)/2(a>0,且a≠1)是奇函数 2020-06-09 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
定积分证明题设f(x)在[-a,a]上连续,具有二阶连续导数,且f(0)=0证明:在[-a,a]上 2020-06-12 …
在光具座上固定一个凸透镜,使烛焰中心在凸透镜主轴MN上,如图所示,当烛焰在A点时,成像在B点;当烛 2020-07-01 …
关于命题问题命题p:不等式|x-1|+|x-3|>a对一切实数x都成立命题q:已知函数f=mx^3 2020-07-14 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
设f(x)在[-a,a]上二阶导函数连续(a>0),且f(0)=0,证明:在[-a,a]上至少存在一 2020-11-01 …
极限换元法什么时候不能用?还是通用的?给出任意一个方程f(x),f是任意方程,可以是抽象的,h也是一 2020-12-05 …