早教吧作业答案频道 -->数学-->
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线x^2-y^2=1的离心率互为倒数且内切与圆x^2+y^2=4...设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线x^2-y^2=1的离心率互为倒数且内切与圆x^2+y^2=41.求椭
题目详情
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线 x^2-y^ 2=1的离心率互为倒数且内切与圆x^2+y^2=4 ...
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线 x^2-y^ 2=1的离心率互为倒数且内切与圆x^2+y^2=4
1.求椭圆M的方程
2.若直线y=根号2x+m交椭圆与A 、B两点,椭圆上一点P(1,根号2),求△PAB面积的最大值
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线 x^2-y^ 2=1的离心率互为倒数且内切与圆x^2+y^2=4
1.求椭圆M的方程
2.若直线y=根号2x+m交椭圆与A 、B两点,椭圆上一点P(1,根号2),求△PAB面积的最大值
▼优质解答
答案和解析
双曲线x²-y²=1的离心率是√2,则椭圆的离心率e=√2/2,圆x²+y²=4的半径是R=2,则:
a=2,c=√2,所以b²=a²-c²=2,得椭圆方程是:x²/4+y²/2=1
直线y=√2x+m代入椭圆中,化简,得:
5x²+4√2mx+2m²-4=0
x1+x2=-4√2m/5,x1x2=-4/5
|AB|=[√(1+k²)]×|x1-x2|=[√(240-24m²)]/5
点P到直线AB的距离d=|m|/√3
则:S=(1/2)×d×|AB|=(1/10)√[80m²-8(m²)²]=(1/10)√[-8(m²-5)²+200]
则S的最大值是(1/10)√200=√2,此时m²=5,即m=±√5
a=2,c=√2,所以b²=a²-c²=2,得椭圆方程是:x²/4+y²/2=1
直线y=√2x+m代入椭圆中,化简,得:
5x²+4√2mx+2m²-4=0
x1+x2=-4√2m/5,x1x2=-4/5
|AB|=[√(1+k²)]×|x1-x2|=[√(240-24m²)]/5
点P到直线AB的距离d=|m|/√3
则:S=(1/2)×d×|AB|=(1/10)√[80m²-8(m²)²]=(1/10)√[-8(m²-5)²+200]
则S的最大值是(1/10)√200=√2,此时m²=5,即m=±√5
看了 设椭圆M:y^2/a^2+x...的网友还看了以下:
设曲线l位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点记为A.|MA|=|O 2020-05-13 …
当自变量x取何值时,曲线y=根号x的切线与y=inx的切线平行? 2020-05-17 …
1.曲线y=x^3+11在点P(1,12)处的切线与y轴交点的纵坐标是?21.曲线y=x^3+11 2020-05-19 …
已知:如图,在平面直角坐标系中,点B在x轴上,以3为半径的⊙B与y轴相切,直线l过点A(-2,0) 2020-06-17 …
在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与 2020-06-29 …
是否存在数XO(0是X的下标)使Y=g(x)在点x=x0的切线与Y轴垂直!参考答案上说问题的关键是 2020-07-29 …
动圆与定圆x^2+y^2-6x=0相外切,又与y轴相切,则动圆的轨迹方程是? 2020-07-31 …
直线与圆的轨迹方程题求与圆(x-2)^2+y^2=1外切且与y轴相切的动圆圆心P的轨迹方程 2020-07-31 …
在平面直角坐标系xoy中y=3/4x+3,与x轴交于A,与y轴交于B,⊙P与x轴相切且与y=3/4x 2020-11-03 …
曲线Y=X立方+11在点P(1.12)处的切线与Y轴交点的纵坐标我是这样算的Y求导得到斜率3然后卡壳 2020-12-23 …