早教吧作业答案频道 -->数学-->
(2013•内江)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x-5=0的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值
题目详情

(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函数的解析式.
▼优质解答
答案和解析
(1)解方程x2+4x-5=0,得x=-5或x=1,
由于x1<x2,则有x1=-5,x2=1,∴A(-5,0),B(1,0).
抛物线的解析式为:y=a(x+5)(x-1)(a>0),
∴对称轴为直线x=-2,顶点D的坐标为(-2,-9a),
令x=0,得y=-5a,
∴C点的坐标为(0,-5a).
依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,
过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE-OC=4a.
S△ACD=S梯形ADEO-S△CDE-S△AOC
=
(DE+OA)•OE-
DE•CE-
OA•OC
=
(2+5)•9a-
×2×4a-
×5×5a
=15a,
而S△ABC=
AB•OC=
×6×5a=15a,
∴S△ABC:S△ACD=15a:15a=1:1;
(2)如解答图,过点D作DE⊥y轴于E
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
设对称轴x=-2与x轴交于点F,则AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.
∵∠ADC=90°,∴△ACD为直角三角形,
由勾股定理得:AD2+CD2=AC2,
即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=
,
∵a>0,
∴a=
,
∴抛物线的解析式为:y=
(x+5)(x-1)=
x2+

由于x1<x2,则有x1=-5,x2=1,∴A(-5,0),B(1,0).
抛物线的解析式为:y=a(x+5)(x-1)(a>0),
∴对称轴为直线x=-2,顶点D的坐标为(-2,-9a),
令x=0,得y=-5a,
∴C点的坐标为(0,-5a).
依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,
过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE-OC=4a.
S△ACD=S梯形ADEO-S△CDE-S△AOC
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=15a,
而S△ABC=
1 |
2 |
1 |
2 |
∴S△ABC:S△ACD=15a:15a=1:1;
(2)如解答图,过点D作DE⊥y轴于E
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
设对称轴x=-2与x轴交于点F,则AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.
∵∠ADC=90°,∴△ACD为直角三角形,
由勾股定理得:AD2+CD2=AC2,
即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=
1 |
6 |
∵a>0,
∴a=
| ||
6 |
∴抛物线的解析式为:y=
| ||
6 |
| ||
6 |
2
|
看了 (2013•内江)已知二次函...的网友还看了以下:
关于导数的问题,搞不懂书上写着:1.函数y=f(x)=c的导数因为Δy/Δx=f(x+Δx)-f(x 2020-03-30 …
看不懂数学导数的教材求解释书上写着:1.函数y=f(x)=c的导数因为Δy/Δx=f(x+Δx)- 2020-05-17 …
已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:.1.已 2020-05-21 …
关于复变函数化成只含z的形式的问题有一道常规的复变函数例题:已知解析函数f(z)的实部u=y^3- 2020-06-20 …
若x+y<0,xy<0,x>y,则有A.x>0,y<0,|x|>|y|B.x>0,y<0,|y|> 2020-07-09 …
因式分解的题...2x-3/x^2-x=A/x-1+B/x,其中A,B为常数,则A+B的值为?已知 2020-07-20 …
微分方程通解,特解,已知y1(x)和y2(x)是方程y'+p(x)y=0的俩个不同的特解,则该方程 2020-07-31 …
类比两角和与差的正弦,余弦公式,对于给定的两个函数S(X)=(E^X-E^-X)/2,C(X)=( 2020-08-03 …
1.若函数形式为f(x,y)=a(x)b(y)+c(x)d(y),a(x),c(x)为关于x的多项式 2020-10-31 …
微分方程y'=(y/x)^2+y/x的通解,答案是y(x+c)+x=0令u=y/x,y‘=u+xu' 2020-11-01 …