早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐
题目详情
如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.

(1)点C的坐标为:___(用含m,n的式子表示);
(2)求证:BM=BN;
(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.

(1)点C的坐标为:___(用含m,n的式子表示);
(2)求证:BM=BN;
(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.
▼优质解答
答案和解析
(1) 过C点作CE⊥y轴于点E,
∵CE⊥y轴,
∴∠BEC=90°,
∴∠BEC=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠ABO+∠BAO=90°,
∴∠CBE=∠BAO,
在△AOB与△BEC中,
,
∴△AOB≌△BEC(AAS),
∴CE=OB=n,BE=OA=m,
∴OE=OB+BE=m+n,
∴点C的坐标为(n,m+n).
故答案为:(n,m+n);
(2)证明:∵△AOB≌△BEC,
∴BE=OA=OP,CE=BO,
∴PE=OB=CE,
∴∠EPC=45°,
∠APC=90°,
∴∠1=∠2,
在△ABM与△CBN中,
,
∴△ABM≌△CBN(ASA),
∴BM=BN;
(3)证明:∵点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,
∴AD=AC,AG=AC,
∴AD=AG,
∵∠1=∠5,∠1=∠6,
∴∠5=∠6,
在△DAH与△GAH中,
,
∴△DAH≌△GAH(SAS),
∴D,G关于x轴对称.

∵CE⊥y轴,
∴∠BEC=90°,
∴∠BEC=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠ABO+∠BAO=90°,
∴∠CBE=∠BAO,
在△AOB与△BEC中,
|
∴△AOB≌△BEC(AAS),
∴CE=OB=n,BE=OA=m,
∴OE=OB+BE=m+n,
∴点C的坐标为(n,m+n).
故答案为:(n,m+n);
(2)证明:∵△AOB≌△BEC,
∴BE=OA=OP,CE=BO,
∴PE=OB=CE,
∴∠EPC=45°,
∠APC=90°,
∴∠1=∠2,
在△ABM与△CBN中,
|
∴△ABM≌△CBN(ASA),
∴BM=BN;
(3)证明:∵点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,
∴AD=AC,AG=AC,
∴AD=AG,
∵∠1=∠5,∠1=∠6,
∴∠5=∠6,
在△DAH与△GAH中,
|
∴△DAH≌△GAH(SAS),
∴D,G关于x轴对称.
看了 如图,在平面直角坐标系中,已...的网友还看了以下:
已知点A、B是椭圆C:x2m2+y2n2=1(m>0,n>0)与直线x-3y+2=0的交点.点M是 2020-05-15 …
已知直线7x+7y-28=0和x-y=0的交点为A.(1)求A的坐标(2)若l经过点A,且坐标原点 2020-05-16 …
求经过直线L1:3x+4y-5=0 L2:2x-3y+8=0的交点M,且满足下列条件的直线方程(1 2020-05-16 …
分别求经过直线l:3x+4y-5=0和直线l:2x-3y+8=0的交点M,且满足下列条件的直线方程 2020-05-16 …
求过两直线x-2y+4=0和x+y-2=0的交点,且分别满足下列条件的直线l的方程.(1)直线l与 2020-06-06 …
已知圆C:(x-b)2+(y-c)2=a2(a>0)与x轴相交,与y轴相离,圆心C(b,c)在第一 2020-07-26 …
求指教"过直线L1:3x-y-5=0,L2:x+2y-4=0的交点且与直线L3:2x-y+1=0垂 2020-08-01 …
平面提问过点A(3,-2)及两直线3x-5y-11=0和4x+y-7=0的交点直线方程一般式若直线 2020-08-01 …
如何求两个圆的交点求圆心在直线l:x+y=0上,且过两圆C1:x^2+y^2-2x+10y-24=0 2020-10-31 …
已知直线m:2x-y-3=0与直线n:x+y-3=0的交点为P.(1)若直线l过点P,且点A(1,3 2020-11-03 …