早教吧作业答案频道 -->数学-->
在三角形ABC中,BA=BC,角BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ(1)点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想角CDB的大小(用含α的代数式表示),
题目详情
在三角形ABC中,BA=BC,角BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ
(1)点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想角CDB的大小(用含α的代数式表示),并加以证明.
(2)对于适当大小的α,当点P在线段BM上运动到某一位置(不与B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,求出α的范围
在三角形ABC中,BA=BC,角BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ
(1)点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想角CDB的大小(用含α的代数式表示),并加以证明.
(2)对于适当大小的α,当点P在线段BM上运动到某一位置(不与B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,求出α的范围
在三角形ABC中,BA=BC,角BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ
▼优质解答
答案和解析
你可以先画个图(1)首先利用已知得出△APD≌△CPD,进而得出∠PAD+∠PQD=∠PQC+∠PQD=180°,即可求出;(2)由(1)得出∠CDB=90°-α,且PQ=QD,进而得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α,得出α的取值范围即可....
看了 在三角形ABC中,BA=BC...的网友还看了以下:
抛物线顶点在原点它的准线过双曲线x^2/a^2-y^2/b^=1的一个焦点,并于双曲线的实轴垂直, 2020-04-08 …
关于高中抛物线1.已知抛物线的顶点是双曲线16x^2-9y^2=144的中心而焦点是双曲线的左顶点 2020-05-14 …
关于一个双曲线的难题,在线等待!急啊!大家帮帮忙吧!设AB是双曲线x^2-y^2除以2=1,上的2 2020-05-15 …
求二次函数关系式(急)(1)抛物线的顶点在原点(0.0),且过点(3,-27);(2)抛物线的顶点 2020-05-19 …
已知焦点在x轴上的双曲线的一条渐近线方程为y=√3x其实轴长等于2抛物线的顶点在顶点在坐标原点焦点 2020-05-23 …
已知直线l过抛物线y*2=2px(p〉0)的焦点,并且与抛物线交于A(x1,x2)和B(y1,y2 2020-05-23 …
1.设直线y=x/2+3交两坐标轴于A.B两点,平移抛物线y=-x^2/4,使其过A,B两点,求平 2020-06-14 …
抛物线y=x^2-2x-3与x轴交与A,B两点,与y轴交与C点.设直线y=-x+3与y轴的交点抛物 2020-06-14 …
双曲线和抛物线高手进已知抛物线的顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1的一 2020-06-16 …
已知椭圆方程:x^2+2y∧2,椭圆的焦点为双曲线的顶点,且双曲线的离心率是椭圆离心率的2倍.(1 2020-06-29 …