早教吧作业答案频道 -->数学-->
已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(
题目详情
已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

▼优质解答
答案和解析
(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
,
∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
图3中的结论为:CF=OE-AE.
选图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
,
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在Rt△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等边三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,
,
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在Rt△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG-CG,
∴CF=OE-AE.
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
|
∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
图3中的结论为:CF=OE-AE.
选图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
|
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在Rt△EFG中,∵EO=OG,

∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等边三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,

|
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在Rt△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG-CG,
∴CF=OE-AE.
看了 已知:点P是平行四边形ABC...的网友还看了以下:
点P,Q分别是边长为1CM的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方 2020-06-03 …
如图,AB=16cm,AC=12cm,动点P、Q分别以每秒2cm和1cm的速度同时开始运动其中点P 2020-06-12 …
在矩形纸片ABCD中,AB=3,BD=5,如图所示,折叠纸片使点A落在边BC上的A'处,折痕为PQ 2020-07-09 …
如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB 2020-07-09 …
如图,甲乙两点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时如图:甲乙两个 2020-07-10 …
等边三角形ABC边长是6,点D,E风别在AB,AC上,且AD=AE=2已知△ABC是边长为6的等边 2020-08-03 …
如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为 2020-11-26 …
在等腰三角形abc中AB=AC=4,点D是BC的中点,点E,F分别在边AB,AC滑动,且E、F分别不 2020-12-23 …
已知正三角形ABC,边长为3,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,速度分别 2020-12-25 …
如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B 2021-01-12 …