早教吧作业答案频道 -->数学-->
f(x)在x=0点可导,且f'(0)≠0,f(0)≠0,且af(x)+bf(2x)-f(0)=O(x),求a,b.如题..
题目详情
f(x)在x=0点可导,且f'(0)≠0,f(0)≠0,且af(x)+bf(2x)-f(0)=O(x),求a,b.
如题..
如题..
▼优质解答
答案和解析

看了 f(x)在x=0点可导,且f...的网友还看了以下:
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1) 2020-05-19 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
f(x)在0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明 2020-06-05 …
1.lim[(ln(1+x))/(x^3)+f(x)/(x^2)]=0x->0求f''(0).2. 2020-06-10 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
高数证明题设f(x)在[0,+∞)内连续,且对任意实数c,方程f(x)=c在[0,+∞)内只有有高 2020-07-30 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …