早教吧作业答案频道 -->数学-->
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-x)-8x=α(x)其中α(x)是当x→0时,比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
题目详情
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-x)-8x=α(x)其中α(x)是当x→0时,比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
▼优质解答
答案和解析
因为f(x)是连续函数,且f(1+sinx)-3f(1-sinx)=8x+o(x)
所以当x→0时,f(1+sinx)=f(1-sinx)=f(1)=8*0+0=0
在f(1+sinx)-3f(1-sinx)=8x+o(x)的两边同时除以sinx后取极限
lim[x→0] [f(1+sinx)-3f(1-sinx)]/sinx = lim[x→0] 8x/sinx = 8*lim[x→0] x/sinx = 8
所以lim[x→0] [f(1+sinx)-3f(1-sinx)]/sinx = 8
lim[x→0] [f(1+sinx)-f(1)]/sinx - 3*lim[x→0] [f(1-sinx)-f(1)]/sinx = 8
lim[x→0] [f(1+sinx)-f(1)]/[(1+sinx)-1] + 3*lim[x→0] [f(1)-f(1-sinx)]/[1-(1-sinx)] = 8
由于f(x)在x=1处可导,则根据导数的定义得f'(1)+3f'(1)=8
所以f'(1)=2
因为f(x)是周期为5的连续函数,则f(6)=f(1+5)=f(1)=0,f'(6)=f'(1+5)=f'(1)=2
所以曲线y=f(x)在点(6,f(6))处的切线过点(6,0)且斜率为2
所以曲线y=f(x)在点(6,f(6))处的切线方程为y=2(x-6),化为一般式为2x-y-12=0
所以当x→0时,f(1+sinx)=f(1-sinx)=f(1)=8*0+0=0
在f(1+sinx)-3f(1-sinx)=8x+o(x)的两边同时除以sinx后取极限
lim[x→0] [f(1+sinx)-3f(1-sinx)]/sinx = lim[x→0] 8x/sinx = 8*lim[x→0] x/sinx = 8
所以lim[x→0] [f(1+sinx)-3f(1-sinx)]/sinx = 8
lim[x→0] [f(1+sinx)-f(1)]/sinx - 3*lim[x→0] [f(1-sinx)-f(1)]/sinx = 8
lim[x→0] [f(1+sinx)-f(1)]/[(1+sinx)-1] + 3*lim[x→0] [f(1)-f(1-sinx)]/[1-(1-sinx)] = 8
由于f(x)在x=1处可导,则根据导数的定义得f'(1)+3f'(1)=8
所以f'(1)=2
因为f(x)是周期为5的连续函数,则f(6)=f(1+5)=f(1)=0,f'(6)=f'(1+5)=f'(1)=2
所以曲线y=f(x)在点(6,f(6))处的切线过点(6,0)且斜率为2
所以曲线y=f(x)在点(6,f(6))处的切线方程为y=2(x-6),化为一般式为2x-y-12=0
看了 已知f(x)是周期为5的连续...的网友还看了以下:
当lim(x-->0)(g(x))=0,证明lim(x-->0)(g(x)*sin1/x)=0li 2020-04-27 …
命题“∀x>0,xx-1>0”的否定是()A.∃x<0,xx-1≤0B.∃x>0,0≤x<1C.∀ 2020-05-13 …
lim(x->0)(1/x-1/e^x-1)我这种解法错在哪里?我的解法如下lim(x->0)(1 2020-05-15 …
函数f(x)=2x^3/x+1,x∈(1/2,1],f(x)=-1/3x+1/6,x∈[0,1/2 2020-05-16 …
函数y=√x(x-1)+√x的定义域为()答案上的解析是:要使函数有意义,必须{x(x-1)≥0, 2020-06-25 …
设函数f(x)={1,x>0,g(x)=x^2f(x-1),则函数g(x)的递减区间?答案是[0, 2020-07-04 …
以下程序段中不能根据X的值正确地计算出符号函数的值,并赋值给变量y的是().A.if(x>0)y= 2020-07-09 …
f(x)=1/π*arctan(1/x)+(a+be^(1/x))/(1+e^(1/x))(x≠0 2020-07-22 …
求曲线y=e∧x上与y=x平行的曲线方程.∵y'=(e∧x)'=e∧x令y'=1,解出x=0∴切点 2020-08-01 …
大家忙我做10道方程题,10y+2(7y-2)=5(4y+3)+3y3/4[4/3*(1/2x-1/ 2020-10-31 …