早教吧作业答案频道 -->数学-->
设f(x)为连续函数,F(t)=∫(1--->t)dy∫(y-->t)f(x)dx,则F'(2)=怎么算
题目详情
设f(x)为连续函数,F(t)=∫(1--->t)dy∫(y-->t)f(x)dx,则F'(2)= 怎么算
▼优质解答
答案和解析
本题其实是二重积分交换次序的问题:
F(t)=∫(1--->t)dy∫(y-->t)f(x)dx,
当t>1时,交换次序
=∫(1--->t) dx∫(1-->x) f(x)dy,
=∫(1--->t) (x-1)f(x) dx
因此F'(t)=(t-1)f(t),t>1
F'(2)=f(2)
F(t)=∫(1--->t)dy∫(y-->t)f(x)dx,
当t>1时,交换次序
=∫(1--->t) dx∫(1-->x) f(x)dy,
=∫(1--->t) (x-1)f(x) dx
因此F'(t)=(t-1)f(t),t>1
F'(2)=f(2)
看了 设f(x)为连续函数,F(t...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
解cosA-1/(2COSA),cosA属于[1/2,1]的取值范围令t=cosA,则f(t)=t 2020-05-17 …
证:周期为T则f(T/2)=0 2020-05-22 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
f(x+2)为奇函数,那么f(x+2)=-f(-x+2)?为什么呢?为什么不等于-f(-x-2)? 2020-06-09 …
证明若f(t)为连续奇函数,则∫f(t)dt(上x下0)为偶函数;若f(t)为连续偶函数,则∫f( 2020-06-26 …
对任意的正数s,t,有下列4个关系式:①f(s+t)=f(s)+f(t);②f(s+t)=f(s) 2020-07-20 …
变上限积分求导f(x)=∫(0,x)(x-t)^2*f(t)dt如何对x求导?原题:函数f(x)满 2020-07-31 …
函数换元问题已知f(1-x/1+x)=1-x^2/1+x^,则f(x)的解析式为过程是设1-x/1 2020-08-01 …
已知f(x+1)=2x-3x+1,求f(x)(换元法):令x+1=t,则x=t-1f(x+1)=f 2020-08-01 …