早教吧作业答案频道 -->数学-->
(2014•广安)如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos
题目详情

(1)求证:E是AC的中点;
(2)若AE=3,cos∠ACB=
2 |
3 |
▼优质解答
答案和解析
(1)证明:连AD,如图
∵AB为⊙O的直径,∠CAB=90°,
∴AC是⊙O的切线,
又∵DE与⊙O相切,
∴ED=EA,
∴∠EAD=∠EDA,
而∠C=90°-∠EAD,∠CDE=90°-∠EDA,
∴∠C=∠CDE,
∴ED=EC,
∴EA=EC,
即E为AC的中点;
(2)由(1)知,E为AC的中点,则AC=2AE=6.
∵cos∠ACB=
,∴sin∠ACB=
=
.
连接AD,则∠ADC=90°,
∴∠ACB+∠CAD=90°,
∵∠CAD+∠DAF=90°,
∴∠DAF=∠ACB,
在Rt△ACD中,AD=AC•sin∠ACB=6×
=2
.
在Rt△ADF中,DF=AD•sin∠DAF=AD•sin∠ACB=2
×
=
,
∴DG=2DF=
.

∵AB为⊙O的直径,∠CAB=90°,
∴AC是⊙O的切线,
又∵DE与⊙O相切,
∴ED=EA,
∴∠EAD=∠EDA,
而∠C=90°-∠EAD,∠CDE=90°-∠EDA,
∴∠C=∠CDE,
∴ED=EC,
∴EA=EC,
即E为AC的中点;
(2)由(1)知,E为AC的中点,则AC=2AE=6.
∵cos∠ACB=
2 |
3 |
1−(
|
| ||
3 |
连接AD,则∠ADC=90°,
∴∠ACB+∠CAD=90°,
∵∠CAD+∠DAF=90°,
∴∠DAF=∠ACB,
在Rt△ACD中,AD=AC•sin∠ACB=6×
| ||
3 |
5 |
在Rt△ADF中,DF=AD•sin∠DAF=AD•sin∠ACB=2
5 |
| ||
3 |
10 |
3 |
∴DG=2DF=
20 |
3 |
看了 (2014•广安)如图,AB...的网友还看了以下:
关于求逆的.设方阵A满足方程A的平方-A-2E=O(opq的o欧),证明:A及A+2E均可逆,并求 2020-04-27 …
已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1= 2020-05-16 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
求救2011复习指南上概率/正态分布/二维/期望值的题2011陈文灯复习指南第474页例3.26X 2020-06-10 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
如何证明e^x-㏑x>2原题是当m≤2时证明f(x)=e^x-㏑﹙x+m﹚成立,我自己推的e^x- 2020-07-03 …
如果对于任意给定的正数总存在一个正整数N,当n>N证:对于任意给定的e>0,要使|yn-2|=|2 2020-07-09 …
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.(1)证明:当点E在棱AB上移动 2020-07-09 …
如何求证C,D,E,F四点共圆.以知:圆1与圆2相交与点A,B,点P在BA的延长线上,割线PCD交 2020-07-31 …