早教吧作业答案频道 -->数学-->
知结论“在正三角形ABC中,若D是边BC中点,G是三角形ABC的重心,则AG:GD=2:1”,如果把该结论推广到空间则有命题“在正四面体ABCD中,若M是底面BCD的中心,O是正四面体ABCD的中心,则AO:OM=3:1.”
题目详情
▼优质解答
答案和解析
设正四面体ABCD边长为1,
易求得AM=根号6/3,
又O到四面体各面的距离都相等,
所以O为四面体的内切球的球心,设内切球半径为r,
则有r=3V/S表,可求得r即OM=根号6/12,
所以AO=AM-OM=根号6/4,所以AO/OM=3:1
故答案为:3:1
易求得AM=根号6/3,
又O到四面体各面的距离都相等,
所以O为四面体的内切球的球心,设内切球半径为r,
则有r=3V/S表,可求得r即OM=根号6/12,
所以AO=AM-OM=根号6/4,所以AO/OM=3:1
故答案为:3:1
看了 知结论“在正三角形ABC中,...的网友还看了以下:
知结论“在正三角形ABC中,若D是边BC中点,G是三角形ABC的重心,则AG:GD=2:1”,如果 2020-04-11 …
在平行四边形ABCD中,过对角线AC的中点O作直线EF分别与AD,BC交于点E,F.连结BEAF在 2020-05-16 …
1、等边三角形△ABC中,在边AB,AC上分别取点D,E,AD=CE,连结CD,BE交于点P,求∠ 2020-06-13 …
在四边形中OABC中,OA平行与CB,角A=角C=120度.连结OB,作角FOB=角BOA,角CO 2020-06-18 …
在四边形ABCD中,角B=90度,角BAD=78度,AD=2AB,求角DAB的度数原图形中,有一条 2020-06-18 …
已知等腰三角形ABC,角A=20度,角B=角C=80度.(注:角B在三角形左边,角C在三角形右边) 2020-06-22 …
在平面几何里,已知直角三角形ABC中,角C为90°,AC=b,BC=a,运用类比方法探求空间中三棱 2020-08-02 …
相似题在角ABC中在角ABC中角CAB=60度点D是角ABC内一点使角CDA=角ADB=角CDB求 2020-08-02 …
在平面几何里,已知直角三角形ABC中,角C为,AC=b,BC=a,运用类比方法探求空间中三棱锥的有 2020-08-02 …
在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到 2020-08-02 …