早教吧作业答案频道 -->其他-->
抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8.(1)求P的值;(2)求点C的坐标
题目详情
抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8.
(1)求P的值;
(2)求点C的坐标;
(3)求直线l的斜率k的取值范围.
(1)求P的值;
(2)求点C的坐标;
(3)求直线l的斜率k的取值范围.
▼优质解答
答案和解析
(1)由
得:y2-2py+2p=0(p>0)有两个相等实根
即△=4p2-8p=4p(p-2)=0,得:p=2为所求;
(2)抛物线y2=4x的准线x=-1.
且|AF|+|BF|=8,由定义得x1+x2+2=8,则x1+x2=6
设C(m,0),由C在AB的垂直平分线上,从而|AC|=|BC|
则(x1−m)2+y12=(x2−m)2+y22
(x1−m)2−(x2−m)2=−y12+y22
(x1+x2-2m)(x1-x2)=-4(x1-x2)
因为x1≠x2,所以x1+x2-2m=-4
又因为x1+x2=6,所以m=5,则点C的坐标为(5,0);
(3)设AB的中点M(x0,y0),有x0=
=3
设直线l方程y=k(x-5)过点M(3,y0),得y0=-2k
又因为点M(3,y0)在抛物线y2=4x的内部,则y02<12
得:4k2<12,则k2<3
又因为x1≠x2,则k≠0
故k的取值范围为(−
0)∪(0,
).
|
即△=4p2-8p=4p(p-2)=0,得:p=2为所求;
(2)抛物线y2=4x的准线x=-1.
且|AF|+|BF|=8,由定义得x1+x2+2=8,则x1+x2=6
设C(m,0),由C在AB的垂直平分线上,从而|AC|=|BC|
则(x1−m)2+y12=(x2−m)2+y22
(x1−m)2−(x2−m)2=−y12+y22
(x1+x2-2m)(x1-x2)=-4(x1-x2)
因为x1≠x2,所以x1+x2-2m=-4
又因为x1+x2=6,所以m=5,则点C的坐标为(5,0);
(3)设AB的中点M(x0,y0),有x0=
| x1+x2 |
| 2 |
设直线l方程y=k(x-5)过点M(3,y0),得y0=-2k
又因为点M(3,y0)在抛物线y2=4x的内部,则y02<12
得:4k2<12,则k2<3
又因为x1≠x2,则k≠0
故k的取值范围为(−
| 3, |
| 3 |
看了 抛物线y2=2px(p>0)...的网友还看了以下:
在梯形ABCD中,AB//CD,∠ABC=90度,AB=9,BC=8,CD=7,E是AD的中点,且 2020-05-16 …
已知二次函数y=x^2-(m^2+8)x+2(m^2+6),设抛物线顶点为A,与X轴交于B,C两点 2020-05-16 …
已知抛物线y2=8(x-2)的焦点和准线分别是一椭圆的焦点和对应的准线,求椭圆短轴端点的轨迹方程已 2020-05-19 …
初三几何题.不难已知抛物线y=x平方-(m平方+8)x+2(m平方+6)1.求证:不论M为任何实数 2020-05-20 …
已知函数f(x)=|lnx|,x>0x2+4x+1,x≤0,若关于x的方程f2(x)-bf(x)+ 2020-06-12 …
已知抛物线y=2x^2-4mx+m^2的.二次函数.已知:抛物线y=2x²-4mx+m²的顶点D在 2020-07-16 …
(2014•甘肃一模)已知函数f(x)=|lg(−x)|,x<0x3−6x+4,x≥0若关于x的函 2020-07-18 …
已知函数f(x)=|lg(-x)|,x<0x2-6x+4,x≥0,若关于x的方程f2(x)-bf( 2020-07-21 …
已知函数f(x)=|lg(−x)|,x<0x3−6x+4,x≥0若关于x的函数y=f2(x)-bf( 2020-11-22 …
初三几何题.不难已知抛物线y=x平方-(m平方+8)x+2(m平方+6)1.求证:不论M为任何实数, 2020-12-23 …