早教吧作业答案频道 -->其他-->
抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8.(1)求P的值;(2)求点C的坐标
题目详情
抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8.
(1)求P的值;
(2)求点C的坐标;
(3)求直线l的斜率k的取值范围.
(1)求P的值;
(2)求点C的坐标;
(3)求直线l的斜率k的取值范围.
▼优质解答
答案和解析
(1)由
得:y2-2py+2p=0(p>0)有两个相等实根
即△=4p2-8p=4p(p-2)=0,得:p=2为所求;
(2)抛物线y2=4x的准线x=-1.
且|AF|+|BF|=8,由定义得x1+x2+2=8,则x1+x2=6
设C(m,0),由C在AB的垂直平分线上,从而|AC|=|BC|
则(x1−m)2+y12=(x2−m)2+y22
(x1−m)2−(x2−m)2=−y12+y22
(x1+x2-2m)(x1-x2)=-4(x1-x2)
因为x1≠x2,所以x1+x2-2m=-4
又因为x1+x2=6,所以m=5,则点C的坐标为(5,0);
(3)设AB的中点M(x0,y0),有x0=
=3
设直线l方程y=k(x-5)过点M(3,y0),得y0=-2k
又因为点M(3,y0)在抛物线y2=4x的内部,则y02<12
得:4k2<12,则k2<3
又因为x1≠x2,则k≠0
故k的取值范围为(−
0)∪(0,
).
|
即△=4p2-8p=4p(p-2)=0,得:p=2为所求;
(2)抛物线y2=4x的准线x=-1.
且|AF|+|BF|=8,由定义得x1+x2+2=8,则x1+x2=6
设C(m,0),由C在AB的垂直平分线上,从而|AC|=|BC|
则(x1−m)2+y12=(x2−m)2+y22
(x1−m)2−(x2−m)2=−y12+y22
(x1+x2-2m)(x1-x2)=-4(x1-x2)
因为x1≠x2,所以x1+x2-2m=-4
又因为x1+x2=6,所以m=5,则点C的坐标为(5,0);
(3)设AB的中点M(x0,y0),有x0=
x1+x2 |
2 |
设直线l方程y=k(x-5)过点M(3,y0),得y0=-2k
又因为点M(3,y0)在抛物线y2=4x的内部,则y02<12
得:4k2<12,则k2<3
又因为x1≠x2,则k≠0
故k的取值范围为(−
3, |
3 |
看了 抛物线y2=2px(p>0)...的网友还看了以下:
已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=2px的焦点重合,抛物线焦点 2020-04-08 …
已知抛物线y=ax²+bx+c(a>0)的顶点是C(0,1),直线l:y=﹣ax+3与这条抛物线交 2020-05-16 …
已知直线l过抛物线y*2=2px(p〉0)的焦点,并且与抛物线交于A(x1,x2)和B(y1,y2 2020-05-23 …
求满足下列条件的直线方程,并化成直线的一般是方程.1)经过点B(4,2),垂直于Y轴2)经过点C( 2020-06-02 …
如图所示,有1、2、3三个质量均为m=1kg的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的 2020-06-11 …
关于角动量中能量不守恒的问题关于角动量的问题:一个人站在转台中心,双手各持5公斤波的重物,以2秒一 2020-06-17 …
如图,直线y=2x+3与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点B,过点B作BC⊥ 2020-06-19 …
已知点A(m,4)(m>0)在抛物线x^2=4y上,过点A作倾斜角互补的两条直线l1和l2,且l1 2020-07-29 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
一氯代物有2种,二氯代物有3种的有机物是()A.乙烷B.丙烷C.2-甲基丙烷D.2,2-二甲基丙烷 2020-11-29 …