早教吧作业答案频道 -->数学-->
抛物线y=ax2(a≠0)与直线y=4x-3交于点A(m,1).(1)求点A的坐标及抛物线的解析式;(2)写出抛物线的开口方向、顶点坐标和对称轴;(3)写出抛物线y=ax2与直线y=4x-3的另一个交点B的坐
题目详情
2
2
2
▼优质解答
答案和解析
(1)将A(m,1)代入直线y=4x-3中得:1=4m-3,即m=1,
∴A(1,1),
将x=1,y=1代入抛物线解析式得:a=1,
则抛物线解析式为y=x22;
(2)∵a=1>0,∴抛物线开口向上,
顶点坐标为(0,0),对称轴为直线x=0,即y轴;
(3)联立得:
,
消去y得:x2=4x-3,即x2-4x+3=0,
分解因式得:(x-1)(x-3)=0,
解得:x=1或x=3,
当x=3时,y=12-3=9,
则两函数另一个交点为(3,9).
y=x2 y=x2 y=x22y=4x−3 y=4x−3 y=4x−3 ,
消去y得:x2=4x-3,即x2-4x+3=0,
分解因式得:(x-1)(x-3)=0,
解得:x=1或x=3,
当x=3时,y=12-3=9,
则两函数另一个交点为(3,9).
∴A(1,1),
将x=1,y=1代入抛物线解析式得:a=1,
则抛物线解析式为y=x22;
(2)∵a=1>0,∴抛物线开口向上,
顶点坐标为(0,0),对称轴为直线x=0,即y轴;
(3)联立得:
|
消去y得:x2=4x-3,即x2-4x+3=0,
分解因式得:(x-1)(x-3)=0,
解得:x=1或x=3,
当x=3时,y=12-3=9,
则两函数另一个交点为(3,9).
|
y=x2 |
y=4x−3 |
y=x2 |
y=4x−3 |
y=x2 |
y=4x−3 |
消去y得:x2=4x-3,即x2-4x+3=0,
分解因式得:(x-1)(x-3)=0,
解得:x=1或x=3,
当x=3时,y=12-3=9,
则两函数另一个交点为(3,9).
看了 抛物线y=ax2(a≠0)与...的网友还看了以下:
如图,抛物线y=ax2+bx(a>0)与双曲线y=k/x相交于点A,B.点A的坐标为(1,4)点B 2020-05-16 …
管线立面体标高符号一般标注在()上。A.标高线上B.中心线上C.编号线上D.尺寸界线 2020-05-31 …
(2013•西城区二模)如图1,在平面直角坐标系xOy中,直线l和抛物线W交于A,B两点,其中点A 2020-06-12 …
已知抛物线y=x^2-2(m-1)x+(m^2-7)与x轴有两个不同的交点.(1).求m的取值范围 2020-06-14 …
已知:抛物线经过坐标原点。(1)求抛物线的解析式和顶点B的坐标;(2)设点A是抛物线与x轴的另一个 2020-07-24 …
(2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线 2020-07-26 …
已知抛物线y^2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点A到抛物线 2020-08-01 …
如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C( 2020-10-31 …
如图所示,在平面直角坐标系中,抛物线的顶点M到x轴的距离是4,抛物线与x轴相交于O、P两点,OP=4 2020-12-25 …
如图,直线y=2x-2与x轴交于点A,抛物线y=ax2+bx+c的对称轴是直线x=3,抛物线经过点A 2021-01-15 …