早教吧作业答案频道 -->数学-->
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)1)求
题目详情
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
1)求直线AB的函数关系式
(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
1)求直线AB的函数关系式
(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
▼优质解答
答案和解析
抛物线y=-(5/4)x²+(17/4)x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥
x轴,垂足为点C(3,0);1)求直线AB的函数关系式(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
(1)令x=0得y=1,故A点的坐标为(0,1);故可设过A点的直线方程为y=kx+1.(1);
再令抛物线中的x=3,得y=-(5/4)×9+(17/4)×3+1=3/2+1=5/2;故B点的坐标为(3,5/2),代入(1)
式得5/2=3k+1,故k=(5/2-1)/3=(3/2)/3=1/2,再代入(1)式即得直线方程为y=(1/2)x+1;
为所求.
(2).S=-(5/4)t²+(17/4)t+1-[(1/2)t+1]=-(5/4)t²+(15/4)t;(0≦t≦3)
(3)当∣MN∣=∣BC∣时四边形BCMN为平行四边形(一组对边平行且相等);
为此令-(5/4)t²+(15/4)t=5/2;化简得t²-3t+2=(t-2)(t-1)=0,故得t₁=1;t₂=2;
即当t=1秒或2秒时四边形BCMN是平行四边形.
当t=1时,M(1,3/2),C(3,0);∣MC∣=√[(1-3)²+(3/2)²]=√(4+9/4)=√(25/4)=5/2=∣BC∣
故此时(t=1秒)平行四边形BCMN是菱形;
当t=2时,M(2,2);C(3,0);∣MC∣=√[(2-3)²+2²]=√(1+4)=√5≠∣BC∣=5/2;
故此时(t=2秒)平行四边形BCMN不是菱形.
x轴,垂足为点C(3,0);1)求直线AB的函数关系式(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
(1)令x=0得y=1,故A点的坐标为(0,1);故可设过A点的直线方程为y=kx+1.(1);
再令抛物线中的x=3,得y=-(5/4)×9+(17/4)×3+1=3/2+1=5/2;故B点的坐标为(3,5/2),代入(1)
式得5/2=3k+1,故k=(5/2-1)/3=(3/2)/3=1/2,再代入(1)式即得直线方程为y=(1/2)x+1;
为所求.
(2).S=-(5/4)t²+(17/4)t+1-[(1/2)t+1]=-(5/4)t²+(15/4)t;(0≦t≦3)
(3)当∣MN∣=∣BC∣时四边形BCMN为平行四边形(一组对边平行且相等);
为此令-(5/4)t²+(15/4)t=5/2;化简得t²-3t+2=(t-2)(t-1)=0,故得t₁=1;t₂=2;
即当t=1秒或2秒时四边形BCMN是平行四边形.
当t=1时,M(1,3/2),C(3,0);∣MC∣=√[(1-3)²+(3/2)²]=√(4+9/4)=√(25/4)=5/2=∣BC∣
故此时(t=1秒)平行四边形BCMN是菱形;
当t=2时,M(2,2);C(3,0);∣MC∣=√[(2-3)²+2²]=√(1+4)=√5≠∣BC∣=5/2;
故此时(t=2秒)平行四边形BCMN不是菱形.
看了 如图,抛物线y=-5/4x^...的网友还看了以下:
如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线 2020-05-15 …
抛物线与直线围成的图形的面积抛物线C:y=2x²,直线l1,y=-4x+2,直线l2,x=a,a≠ 2020-06-27 …
已知三棱柱ABC-A1B1C1的三视图与直观图如图所示,其中主视图AA1B1B和左视图B1BCC1 2020-07-24 …
比较条形图与直方图有什么相同与不同. 2020-07-29 …
(2014•洪山区一模)如图1,已知抛物线C1:y=x2-2x+c和直线l:y=-2x+8,直线y 2020-07-31 …
如图,抛物线y=-14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52),直线y=kx 2020-11-01 …
如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一 2020-11-01 …
如图,抛物线y=1/2x+mx+n(n≠0)与直线y=x交与AB两点如图,抛物线y=1/2x+mx+ 2021-01-10 …
某一次函数图与直线y=1/2x+3平行,并且过点(-2,-4),(1)求这个函数解析式(2)与x轴, 2021-01-10 …
(2011.浙江)如图,在直角坐标系中,抛物线y=ax^2+bx+c与x轴交与点A(﹣1,0)如图, 2021-01-10 …