早教吧作业答案频道 -->数学-->
已知函数f(x,y,z)连续,Σ是平面x-y+z=1在第四卦限的上侧,将对坐标的曲面积分:I=∫∫[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dxdz+[f(x,y,z)+z]dxdy化为对面积的曲面积分,并求出结果.
题目详情
已知函数f(x,y,z)连续,Σ是平面x-y+z=1在第四卦限的上侧,将对坐标的曲面积分:I=∫∫[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dxdz+[f(x,y,z)+z]dxdy
化为对面积的曲面积分,并求出结果.
化为对面积的曲面积分,并求出结果.
▼优质解答
答案和解析
要化为对面积的曲面积分,需要求出Σ的法向量的方向余弦:
平面Σ的方程是F(X,Y,Z)=x-y+z-1=0,
F对x求导=1,F对y求导=-1,F对z求导=1,
Σ取上侧,应该保证cosγ为正的,
所以cosα=1/√3,cosβ=-1/√3,cosγ=1/√3.
于是化为对面积的曲面积分=1/√3∫∫[f(x,y,z)+x]-[2f(x,y,z)+y]+[f(x,y,z)+z]dS
=1/√3∫∫1dS
=1/√3*Σ的面积
=1/√3*√3/2=1/2.
平面Σ的方程是F(X,Y,Z)=x-y+z-1=0,
F对x求导=1,F对y求导=-1,F对z求导=1,
Σ取上侧,应该保证cosγ为正的,
所以cosα=1/√3,cosβ=-1/√3,cosγ=1/√3.
于是化为对面积的曲面积分=1/√3∫∫[f(x,y,z)+x]-[2f(x,y,z)+y]+[f(x,y,z)+z]dS
=1/√3∫∫1dS
=1/√3*Σ的面积
=1/√3*√3/2=1/2.
看了 已知函数f(x,y,z)连续...的网友还看了以下:
留数的物理意义是什么?函数f(z)=cosz/z^3,以z=0为孤立奇点,它在z=0的去心临域内的 2020-06-14 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
设f(x,y)在点(0,0)附近有定义,且fx′(0,0)=3,fy′(0,0)=1,则()A.d 2020-06-18 …
多元复合函数求导时z=f{x,y}偏Z/偏X与偏Y/偏X不同到底不同在哪?多元复合函数求导时z=f 2020-07-13 …
多元复合函数求导时z=f{x,y}偏Z/偏X与偏f/偏X不同到底不同在哪多元复合函数求导时z=f{ 2020-07-13 …
计算积分∮e^z/(z^2+1)的值,其中C是正向圆周|z|=2.解是z=i和z=-i做小圆周,则 2020-07-29 …
设M={X|1≤x≤9,x∈Z},F={(a,b,c,d)|a,b,c,d∈M},映射f:F→Z, 2020-07-30 …
关于一个概率论的小问题,答得好有追加分二维随机变量服从Z=X+Y的分布,由卷积公式可得,Z的概率密 2020-08-02 …
设函数z=z(x,y),由方程z=f(xz,z-y)确定,其中f具有一阶连续偏导数,则∂z/∂x= 2020-11-01 …
设z=z(x,y)是由f(x-z,y-z)=0确定的隐函数,其中f有二阶连续偏导数,且f1′+f2′ 2020-11-01 …