早教吧作业答案频道 -->数学-->
一道圆锥曲线问题,有一定难度,已知椭圆C:x^2/4+y^2=1及定点P(t,0)(t>0),斜率为0.5的直线L经过点P并与椭圆C交于不同的两点A、B,且对于椭圆上任意一点M,都存在θ∈[0,2π],使得OM=cosθ*OA+sinθ*OB(OM,OA
题目详情
一道圆锥曲线问题,有一定难度,
已知椭圆C:x^2/4+y^2=1及定点P(t,0) (t>0),斜率为0.5的直线L经过点P并与椭圆C交于不同的两点A、B,且对于椭圆上任意一点M,都存在θ∈[0,2π],使得OM=cosθ*OA+sinθ*OB(OM,OA,OB为向量)成立,试求出满足条件的实数t的值.
已知椭圆C:x^2/4+y^2=1及定点P(t,0) (t>0),斜率为0.5的直线L经过点P并与椭圆C交于不同的两点A、B,且对于椭圆上任意一点M,都存在θ∈[0,2π],使得OM=cosθ*OA+sinθ*OB(OM,OA,OB为向量)成立,试求出满足条件的实数t的值.
▼优质解答
答案和解析
设直线L的方程为 y=1/2*(x-t)
代入椭圆C方程得:2x^2-2tx+t^2-4=0
设M,A,B坐标分别为(x,y),(x1,y1),(x2,y2)
因为 OM=cosθ*OA+sinθ*OB
所以 x=cosθ*x1+sinθ*x2
y=cosθ*y1+sinθ*y2
因此M点坐标为(cosθ*x1+sinθ*x2,cosθ*y1+sinθ*y2
因为 M 在椭圆C上
所以 (cosθ*x1+sinθ*x2)^2+4*(cosθ*y1+sinθ*y2)^2=4
cos^2θ*x1^2+2cosθsinθ*x1x2+sin^2θ*x2^2+4cos^2θ*y1^2+8sinθcosθy1y2+4sin^2θy2^2=4
cos^2θ*(x1^2+4y1^2)+sin^2θ*(x2^2+4y2^2)+2sinθcosθ(x1x2+4*y1y2)=4
因为 A,B 也在椭圆上
所以 x1^2+4y1^2=x2^2+4y2^2=4
因此上述式子化简得
4cos^2θ+4sin^2θ+2sinθcosθ(x1x2+4*y1y2)=4
2sinθcosθ(x1x2+4*y1y2)=0
因为对任意 θ 都有上述式子成立
所以 x1x2+4*y1y2=0
因为 A.B 在直线L上
y1=(1/2)*x1-(1/2)*t
y2=(1/2)*x2-(1/2)*t
代入 x1x2+4*y1y2=0 得
2*x1x2-(x1+x2)t+t^2=0
由韦达定理
t^2-4-t^2+t^2=0
解得t=正负2
因为 t>0
所以 t=2
代入椭圆C方程得:2x^2-2tx+t^2-4=0
设M,A,B坐标分别为(x,y),(x1,y1),(x2,y2)
因为 OM=cosθ*OA+sinθ*OB
所以 x=cosθ*x1+sinθ*x2
y=cosθ*y1+sinθ*y2
因此M点坐标为(cosθ*x1+sinθ*x2,cosθ*y1+sinθ*y2
因为 M 在椭圆C上
所以 (cosθ*x1+sinθ*x2)^2+4*(cosθ*y1+sinθ*y2)^2=4
cos^2θ*x1^2+2cosθsinθ*x1x2+sin^2θ*x2^2+4cos^2θ*y1^2+8sinθcosθy1y2+4sin^2θy2^2=4
cos^2θ*(x1^2+4y1^2)+sin^2θ*(x2^2+4y2^2)+2sinθcosθ(x1x2+4*y1y2)=4
因为 A,B 也在椭圆上
所以 x1^2+4y1^2=x2^2+4y2^2=4
因此上述式子化简得
4cos^2θ+4sin^2θ+2sinθcosθ(x1x2+4*y1y2)=4
2sinθcosθ(x1x2+4*y1y2)=0
因为对任意 θ 都有上述式子成立
所以 x1x2+4*y1y2=0
因为 A.B 在直线L上
y1=(1/2)*x1-(1/2)*t
y2=(1/2)*x2-(1/2)*t
代入 x1x2+4*y1y2=0 得
2*x1x2-(x1+x2)t+t^2=0
由韦达定理
t^2-4-t^2+t^2=0
解得t=正负2
因为 t>0
所以 t=2
看了 一道圆锥曲线问题,有一定难度...的网友还看了以下:
已知椭圆方程x225+y29=1,椭圆上点M到该椭圆一个焦点F1的距离是2,N是MF1的中点,O是 2020-05-15 …
已知椭圆方程,椭圆上点M到该椭圆一个焦点的距离为2,N是的中点,O是椭圆的中心,那么线段ON的长度 2020-05-15 …
如图,已知P是椭圆x2a2+y2b2=1(a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O 2020-05-15 …
已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P 2020-05-20 …
已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B,(Ⅰ)(ⅰ)若 2020-06-21 …
以椭圆的一个焦点F为圆心作一个圆,使该圆过椭圆的中心O并且与椭圆交于M,N两点,如果|MF|=|M 2020-07-22 …
以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直 2020-07-26 …
已知椭圆和圆O:,过椭圆上一点P引圆O的两条切线,切点分别为A,B。(1)(ⅰ)若圆O过椭圆的两个 2020-07-31 …
已知椭圆和圆:,过椭圆上一点P引圆O的两条切线,切点分别为A,B.(1)(ⅰ)若圆O过椭圆的两个焦 2020-07-31 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …