早教吧作业答案频道 -->数学-->
已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,
题目详情
已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.求证|OP|·|OQ|为定值
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.求证|OP|·|OQ|为定值
▼优质解答
答案和解析
解法一 利用参数方程:
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
设M(x0,y0),P(p,0),Q(q,0).
由直线方程的截距式及M,P,B1三点共线,
x0/p-y0/b=1,
p=bx0/(b+y0),
同理
q=bx0/(b-y0).
|OP|·|OQ|=|pq|=b^2x0^2/(b^2-y0^2)
由椭圆方程
x0^2=a^2(b^2-y0^2)/b^2
|OP|·|OQ|=a^2为定值.
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
设M(x0,y0),P(p,0),Q(q,0).
由直线方程的截距式及M,P,B1三点共线,
x0/p-y0/b=1,
p=bx0/(b+y0),
同理
q=bx0/(b-y0).
|OP|·|OQ|=|pq|=b^2x0^2/(b^2-y0^2)
由椭圆方程
x0^2=a^2(b^2-y0^2)/b^2
|OP|·|OQ|=a^2为定值.
看了 已知椭圆X^2/a^2+y^...的网友还看了以下:
已知动点P的轨迹到定点A(2,0)的距离和它到定直线x=2分之1的距离比为2⑴求动点P的轨迹方程⑵若 2020-03-30 …
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,2)为圆心,1为半径为 2020-05-15 …
已知点P(2,-1),是否存在过P点且与原点距离为6的直线这道题“已知p(2,-1),是否存在过点 2020-05-16 …
一条光线从点A(-3,4)发出,经过X轴反射,又经过Y轴反射后过点B(-2,6),(1)求点B的反 2020-05-16 …
已知点A(0,2)和B(0,-2)过点A的直线与过点B的直线交于点P,若直线PAPB,的斜率之积为 2020-06-23 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=(根号6)/3,过点A(0,- 2020-07-30 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率e=根6/3过点A(0,-b)和B(a 2020-07-30 …
已知抛物线的顶点在原点,准线方程为x=1/4,该抛物线与过点(-1,0)的直线交于A,B.已知抛物 2020-07-31 …
已知椭圆a2分之x2+2分之y2=1(a>根号2)的离心率为2分之根号2,双曲线C与已知椭圆…有相 2020-08-02 …
已知抛物线C:y=x05.过点M(1,2)的直线L交C与A,B两点,抛物线C在点A处的切线与在点B处 2020-11-01 …