早教吧作业答案频道 -->数学-->
已知函数f(x)=ax3-bx2+cx+b-a(a>0,b,c∈R)(1)设c=0①若a=b,f(x)在x=x0处的切线过点(1,0),求x0的值;②若a>b,求f(x)在区间[0,1]上的最大值.(2)设f(x)在x=x1,x=x2两处取得
题目详情
已知函数f(x)=ax3-bx2+cx+b-a(a>0,b,c∈R)
(1)设c=0
①若a=b,f(x)在x=x0处的切线过点(1,0),求x0的值;
②若a>b,求f(x)在区间[0,1]上的最大值.
(2)设f(x)在x=x1,x=x2两处取得极值,求证:f(x1)=x1,f(x2)=x2不同时成立.
(1)设c=0
①若a=b,f(x)在x=x0处的切线过点(1,0),求x0的值;
②若a>b,求f(x)在区间[0,1]上的最大值.
(2)设f(x)在x=x1,x=x2两处取得极值,求证:f(x1)=x1,f(x2)=x2不同时成立.
▼优质解答
答案和解析
(1) ①若a=b,c=0,则f(x)=a(x3-x2),f′(x)=a(3x2-2x),
f(x)在x=x0处的切线斜率为k=a(3x02-2x0),
则切线方程为y-a(x03-x02)=a(3x02-2x0)(x0-1),
又切线过点(1,0),则a(3x02-2x0)(x0-1)=a(x03-x02),
解得x0=0或1;
②若a>b,c=0,则f′(x)=3ax2-2bx=3ax(x-
),
可得x=0或x=
<1,
若b≤0,则f′(x)≥0,f(x)为(0,1]上的增函数,f(x)的最大值为:f(1)=0,
若b>0,在(0,
)上f′(x)<0,f(x)递减;
在(
,1)上f′(x)>0,f(x)递增.
f(0)=b-a<0,f(1)=0,
则有f(x)的最大值为f(1)=0.
综上可得,f(x)在区间[0,1]上的最大值为0;
(2)证明:假设存在a,b,使得f(x1)=x1,f(x2)=x2同时成立.
设x1<x2,则f(x1)<f(x2),
由f(x)在x=x1,x=x2两处取得极值,
则f′(x)=3ax2-2bx+c=3a(x-x1)(x-x2)(a>0),
由x1<x<x2,f′(x)<0,f(x)为(x1,x2)内的减函数,
则有f(x1)>f(x2),
这与f(x1)<f(x2)矛盾.
故f(x1)=x1,f(x2)=x2不同时成立.
f(x)在x=x0处的切线斜率为k=a(3x02-2x0),
则切线方程为y-a(x03-x02)=a(3x02-2x0)(x0-1),
又切线过点(1,0),则a(3x02-2x0)(x0-1)=a(x03-x02),
解得x0=0或1;
②若a>b,c=0,则f′(x)=3ax2-2bx=3ax(x-
2b |
3a |
可得x=0或x=
2b |
3a |
若b≤0,则f′(x)≥0,f(x)为(0,1]上的增函数,f(x)的最大值为:f(1)=0,
若b>0,在(0,
2b |
3a |
在(
2b |
3a |
f(0)=b-a<0,f(1)=0,
则有f(x)的最大值为f(1)=0.
综上可得,f(x)在区间[0,1]上的最大值为0;
(2)证明:假设存在a,b,使得f(x1)=x1,f(x2)=x2同时成立.
设x1<x2,则f(x1)<f(x2),
由f(x)在x=x1,x=x2两处取得极值,
则f′(x)=3ax2-2bx+c=3a(x-x1)(x-x2)(a>0),
由x1<x<x2,f′(x)<0,f(x)为(x1,x2)内的减函数,
则有f(x1)>f(x2),
这与f(x1)<f(x2)矛盾.
故f(x1)=x1,f(x2)=x2不同时成立.
看了 已知函数f(x)=ax3-b...的网友还看了以下:
会做的来解决看,看看你有多厉害、、、、已知定义域为R的函数f(x)在8到正无穷上是减函数,且函数y 2020-04-26 …
1:如图,用与竖直方向成30度角的力F将重为10N的物体推靠在光滑的竖直墙上,求当物体沿着墙匀速滑 2020-04-27 …
f(x)是定义在n+上的函数f(a)+f(b)=f(a+b)-abf(1)=1f(x)是定义在n+ 2020-05-15 …
1.a和b属于正整数,a的100次方是一个120位数,a的b次方是一个10位数,求b值?2.f(x 2020-05-17 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
设定义在(0,+∞)上的函数f(x)满足下面三个条件:①f(2)=0;②对于任意正实数a,b都有f 2020-06-08 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
设函数f(x)在点x0及其邻近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)^2.a 2020-07-22 …
已知集合A={1,2,3},B={-1,o,1}已知集合A={1,2,3},B={-1,0,1}, 2020-07-30 …
函数值恒为正数的函数f(x)对任意实数a,b,均有f(a+b)=f(a)·f(b),且当x<0时,f 2020-11-06 …