早教吧作业答案频道 -->数学-->
若正数a.b满足a^2/(a^4+a^2+1)=1/24,b^3/(b^6+b^3+1)=1/19,则ab/(a^2+a+1)(b^2+b+1)=
题目详情
若正数a.b满足a^2/(a^4+a^2+1)=1/24,b^3/(b^6+b^3+1)=1/19,则ab/(a^2+a+1)(b^2+b+1)=
▼优质解答
答案和解析
因为,a^2/(a^4+a^2+1)=1/24
所以,24=(a^4+a^2+1)/a^2=a^2+1+1/a^2=(a+1/a)^2-1
由于a>0 所以,a+1/a=√(24+1)=5
又因为b^3/(b^6+b^3+1)=1/19
所以,19=b^3+1+1/b^3
令t=b+1/b可知,t≥2
且有,t^3=b^3+3b+3/b+1/b^3=b^3+1+1/b^3-1+3(b+1/b)
即t^3=19-1+3t
t^3-3t-18=0
t^3-3t^2+3t^3-9t+6t-18=0
(t-3)(t^2+3t+6)=0
由于t^2+3t+6>0,所以t=3
ab/(a^2+a+1)(b^2+b+1)取倒数为
(a^2+a+1)(b^2+b+1)/ab=(a+1+1/a)(b+1+1/b)
=(5+1)(3+1)=24
所以,ab/(a^2+a+1)(b^2+b+1)=1/24
所以,24=(a^4+a^2+1)/a^2=a^2+1+1/a^2=(a+1/a)^2-1
由于a>0 所以,a+1/a=√(24+1)=5
又因为b^3/(b^6+b^3+1)=1/19
所以,19=b^3+1+1/b^3
令t=b+1/b可知,t≥2
且有,t^3=b^3+3b+3/b+1/b^3=b^3+1+1/b^3-1+3(b+1/b)
即t^3=19-1+3t
t^3-3t-18=0
t^3-3t^2+3t^3-9t+6t-18=0
(t-3)(t^2+3t+6)=0
由于t^2+3t+6>0,所以t=3
ab/(a^2+a+1)(b^2+b+1)取倒数为
(a^2+a+1)(b^2+b+1)/ab=(a+1+1/a)(b+1+1/b)
=(5+1)(3+1)=24
所以,ab/(a^2+a+1)(b^2+b+1)=1/24
看了 若正数a.b满足a^2/(a...的网友还看了以下:
求教工程数学线性代数1若n阶矩阵A为正交矩阵,则A必为可逆矩阵且A-1=A'2若Rank(A)=n 2020-04-12 …
若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集 2020-06-15 …
这张考卷请大家帮忙了壹,已知集合A=[a-3,2a-1,a²+1],a∈R1,若-3∈A,求实数a 2020-06-21 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
设数集S符合下面两个条件:①1不属于S②若a∈S,则1/(1-a)∈S求证:a∈S,则1-1/a∈ 2020-07-11 …
设集合A满足以下条件,若a∈A,则1/1-a∈A,且1∈A1.设集合A满足以下条件,若a∈A,则1 2020-07-16 …
若a2-6a-1=0a2+1/a-2=若a2-6a-1=0a2+1/a-2= 2020-10-31 …
若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集合 2020-11-21 …
若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A;且x≠0时,1x∈A,则称集合 2020-11-27 …
1.确定x,y的值,使A={2,x},B={3,5,y},满足A包含于B.2.设A{b,1,3},B 2020-12-31 …