早教吧作业答案频道 -->数学-->
求(-x^2-2)/(x^2+x+1)^2dx的不定积分
题目详情
求(-x^2-2)/(x^2+x+1)^2dx的不定积分
▼优质解答
答案和解析
求不定积分∫[(-x²-2)/(x²+x+1)²]dx
原式=-∫[(x²+2)/(x²+x+1)²]dx
(x²+2)/(x²+x+1)=A/(x²+x+1)+(Bx+C)/(x²+x+1)²=[A(x²+x+1)+Bx+C]/(x²+x+1)²
故得x²+2=Ax²+(A+B)x+A+C;这是恒等式,对应项系数相等:
∴A=1;A+B=0;A+C=2;由此解得A=1,B=-1,C=1;
故原式=-{∫[1/(x²+x+1)]dx-∫(x-1)/(x²+x+1)²]dx}
=-∫dx/[(x+1/2)²+3/4]+∫xdx/(x²+x+1)²-∫dx/(x²+x+1)²
=-∫d(x+1/2)/[(x+1/2)²+3/4]+(1/2)∫d(x²+x+1)/(x²+x+1)²-(1/2)∫dx/(x²+x+1)²-∫dx/(x²+x+1)²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)∫d(x+1/2)/[(x+1/2)²+3/4]²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)(2/√3)arctan[2(x+1/2)/√3]+C
=-(4/√3)arctan[(2x+1)/√3]-1/[2(x²+x+1)]+C
原式=-∫[(x²+2)/(x²+x+1)²]dx
(x²+2)/(x²+x+1)=A/(x²+x+1)+(Bx+C)/(x²+x+1)²=[A(x²+x+1)+Bx+C]/(x²+x+1)²
故得x²+2=Ax²+(A+B)x+A+C;这是恒等式,对应项系数相等:
∴A=1;A+B=0;A+C=2;由此解得A=1,B=-1,C=1;
故原式=-{∫[1/(x²+x+1)]dx-∫(x-1)/(x²+x+1)²]dx}
=-∫dx/[(x+1/2)²+3/4]+∫xdx/(x²+x+1)²-∫dx/(x²+x+1)²
=-∫d(x+1/2)/[(x+1/2)²+3/4]+(1/2)∫d(x²+x+1)/(x²+x+1)²-(1/2)∫dx/(x²+x+1)²-∫dx/(x²+x+1)²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)∫d(x+1/2)/[(x+1/2)²+3/4]²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)(2/√3)arctan[2(x+1/2)/√3]+C
=-(4/√3)arctan[(2x+1)/√3]-1/[2(x²+x+1)]+C
看了 求(-x^2-2)/(x^2...的网友还看了以下:
1.若m+4=根号2-n+根号n-2成立,求m^2+n的平方根2.计算题(1).根号12-3倍√- 2020-04-11 …
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
二重积分问题:f(x,y)=(R^2-x^2-y^2)^1/2;区域D为x^2+y^2=Rx;R为 2020-06-06 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
(答得好加分)1.已知X^2+y^2-2x+4y+5=0,求x、y的值2.已知a^2+b^2=5, 2020-07-18 …
一道关于一元函数导数的问题把y看作自变量,x为因变量,变换方程求证{(dy/dx)*[(dy)^3 2020-07-25 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
基本不等式的使用问题a+b=1,求(a+2)^2+(b+2)^2的最小值.在这道题里,如果使用基本 2020-08-03 …