早教吧作业答案频道 -->数学-->
哪个天才来证明一下下面这三个命题1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称,则y=f(x)一定是周期函数,且T=2|a-b|是它的一个周期2.若y=f(x)既关于直线x=a对称,又关于点(b,c)中心对称,则y
题目详情
哪个天才来证明一下 下面这三个命题
1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称,则y=f(x)一定是周期函数,且T=2|a-b|是它的一个周期
2.若y=f(x)既关于直线x=a对称,又关于点(b,c)中心对称,则y=f(x)一定是周期函数,且T=4|a-b|是它的一个周期.
3.定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称
1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称,则y=f(x)一定是周期函数,且T=2|a-b|是它的一个周期
2.若y=f(x)既关于直线x=a对称,又关于点(b,c)中心对称,则y=f(x)一定是周期函数,且T=4|a-b|是它的一个周期.
3.定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称
▼优质解答
答案和解析
1.
不妨设a>b;
f(x)关于x=a对称因此f(a+x)=f(a-x),同理f(b+x)=f(b-x);
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) (因为关于a对称)
= f(b-(x-a))
= f(b+(x-a)) (因为关于b对称)
= f(x-(a-b))
因此f(x)是周期函数,2(a-b)是它的一个周期
2.
不妨设a>b
关于x=a对称:f(a+x)=f(a-x)
关于(b,c)对称:f(b+x)+f(b-x)=2c .如果不理解的话画个图来看
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) = f(b-(x-a))
= 2c - f(b+(x-a))
= 2c - f(x-(a-b))
由x-(a-b)的任意性,变量替换:令t=x-(a-b):
得到 f(t+2(a-b)) = 2c - f(t)
因此 f(t+4(a-b)) = 2c - f(t+2(a-b)) = 2c - ( 2c - f(t) ) = f(t)
3.
这个好似很显然哦...
化一化的话可以化成:
令x=a+t
则 f(a+t) = 2b - f(a-t)
即 f(a+t) + f(a-t) = 2b
表示距离a距离相同的点(分别为a-t和a+t)的函数值刚好分布在b的两边的对称位置
这些题目实在没头绪的话,一个是要知道那些f(a+x)=f(a-x)这类函数关系和对称性的关系,还一个是最好对着图来想
不妨设a>b;
f(x)关于x=a对称因此f(a+x)=f(a-x),同理f(b+x)=f(b-x);
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) (因为关于a对称)
= f(b-(x-a))
= f(b+(x-a)) (因为关于b对称)
= f(x-(a-b))
因此f(x)是周期函数,2(a-b)是它的一个周期
2.
不妨设a>b
关于x=a对称:f(a+x)=f(a-x)
关于(b,c)对称:f(b+x)+f(b-x)=2c .如果不理解的话画个图来看
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) = f(b-(x-a))
= 2c - f(b+(x-a))
= 2c - f(x-(a-b))
由x-(a-b)的任意性,变量替换:令t=x-(a-b):
得到 f(t+2(a-b)) = 2c - f(t)
因此 f(t+4(a-b)) = 2c - f(t+2(a-b)) = 2c - ( 2c - f(t) ) = f(t)
3.
这个好似很显然哦...
化一化的话可以化成:
令x=a+t
则 f(a+t) = 2b - f(a-t)
即 f(a+t) + f(a-t) = 2b
表示距离a距离相同的点(分别为a-t和a+t)的函数值刚好分布在b的两边的对称位置
这些题目实在没头绪的话,一个是要知道那些f(a+x)=f(a-x)这类函数关系和对称性的关系,还一个是最好对着图来想
看了 哪个天才来证明一下下面这三个...的网友还看了以下:
关于微积分设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f 2020-06-10 …
导数下方的面积问题导数下方的面积与原函数到底是什么关系?是相等吗?因为一个导数可以对应很多函数.f 2020-06-10 …
关于周期T与频率f的关系——f=1/T我们知道波的周期T与频率f满足“f=1/T”的关系,那这个关 2020-07-05 …
针对程序段:IF(A||B||C)THENW=W/X,对于(A,B,C)的取值,(57)测试用例能 2020-07-10 …
高一必修一关于用换元法求函数解析式的问题、、、、、、、学霸们、老师么、专家们.求救为什么最后可以用 2020-08-01 …
关于高一函数的换元法已知f(x-1)=x²-2x,求f(x)老师给的解题过程:设t=x-1∵x∈R 2020-08-01 …
关于周期函数积分的问题,有一个定理理解不了,假定周期函数f(x)以T为周期,则f(x)的全体原函数 2020-08-01 …
导数下方的面积问题导数下方的面积与原函数到底是什么关系?因为一个导数可以对应很多函数.f(t)=2t 2020-12-26 …
一道函数题f(1/x)=x²+1/x+1则f'(1)=(-1)分析令1/x=t则t=1/x,可得f( 2021-01-07 …
有一种商品在最近30天内的价格f(t)与天数t的函数关系f(t)=t+20,(0<t<25,t∈N) 2021-01-11 …