早教吧作业答案频道 -->数学-->
半径为2的圆O中,弦AB,CD垂直相交于P点,连接OP,若OP=1,求证:AC^2+BD^2为定值
题目详情
半径为2的圆O中,弦AB,CD垂直相交于P点,连接OP,若OP=1,求证:AC^2+BD^2为定值
▼优质解答
答案和解析
如图:

作OF⊥AB于F,OE⊥CD 于E,连接OB,OD,
在Rt⊿OFB和Rt⊿OED中,由勾股定理得,
FB²=OB²;-OF² …………………①
ED²=OD²-OE²;…………………②
①+②得
FB²;+ED²;=OB²;+OD²;-(OF²;+OE²;) ……③
∵OE=FP
∴OF²;+OE²;=OF²;+FP²;=OP²=1;
由垂径定理得,
FB=1/2·AB,ED=1/2·CD
代入③得
(1/2·AB﹚²;+(1/2·CD﹚²;=R²;+R²;-1,
即AB²;+CD²;=8R²;-4;
=8×2²-4=28.

作OF⊥AB于F,OE⊥CD 于E,连接OB,OD,
在Rt⊿OFB和Rt⊿OED中,由勾股定理得,
FB²=OB²;-OF² …………………①
ED²=OD²-OE²;…………………②
①+②得
FB²;+ED²;=OB²;+OD²;-(OF²;+OE²;) ……③
∵OE=FP
∴OF²;+OE²;=OF²;+FP²;=OP²=1;
由垂径定理得,
FB=1/2·AB,ED=1/2·CD
代入③得
(1/2·AB﹚²;+(1/2·CD﹚²;=R²;+R²;-1,
即AB²;+CD²;=8R²;-4;
=8×2²-4=28.
看了 半径为2的圆O中,弦AB,C...的网友还看了以下:
P是圆O外一点,BD在圆上,PBPD分别交圆O于AC,如果AP=4AB=2,那么PB的长为()P是圆 2020-03-31 …
如图,PA,PB切O于A,B两点,CD切O于点E,交PA,PB于C,D.延长BO交PA的延长线于点 2020-04-12 …
1.PT切圆O于T,CT为直径,D为OC上的一点,支线PD交圆O于B和A,B在线段PD上,若CD= 2020-04-12 …
如图,PC切⊙O于A,PO的延长线交⊙O于B,BC切⊙于点B.若CB:PC=1:2,求PO:OB的 2020-05-17 …
已知:如图,BC为⊙O的弦,OA⊥BC于E,交⊙O于A,AD⊥AC于A,∠D=2∠B=60°.(1 2020-06-15 …
如图,点P为⊙O外一点,PO及延长线分别交⊙O于A、B,过点P作一直线交⊙O于M、N(异于A、B) 2020-06-17 …
如图,O的半径为5,点P在O外,PB交O于A、B两点,PC交O于D、C两点.(1)求证:PA•PB 2020-07-18 …
一道关于圆的题目,已知BC是圆O的直径D为直径BC上一动点(不与B,O,C重合)过点D作AH⊥BC 2020-07-26 …
如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点 2020-07-31 …
(A)选修4-1:几何证明选讲如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C 2020-12-05 …