早教吧作业答案频道 -->数学-->
(2010•宁德模拟)已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的
题目详情
(2010•宁德模拟)已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA
上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.

(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.
▼优质解答
答案和解析
(1)∵四边形ABCD为矩形,四边形HEFG为菱形,
∴∠D=∠A=90°,HG=HE,又AH=DG=2,
∴Rt△AHE≌Rt△DGH(HL),
∴∠DHG=∠HEA,
∵∠AHE+∠HEA=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形HEFG为正方形;
(2)过F作FM⊥DC,交DC延长线于M,连接GE,
∵AB∥CD,
∴∠AEG=∠MGE,
∵HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠MGF,
在△AHE和△MFG中,∠A=∠M=90°,HE=FG,
∴△AHE≌△MFG,
∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,
因此S△FCG=
×FM×GC=
×2×(7−6)=1;
(3)设DG=x,则由第(2)小题得,S△FCG=7-x,在△AHE中,AE≤AB=7,
∴HE2≤53,
∴x2+16≤53,
∴x≤
,
∴S△FCG的最小值为7−
,此时DG=
,
∴当DG=
时,△FCG的面积最小为(7−
).
∴∠D=∠A=90°,HG=HE,又AH=DG=2,
∴Rt△AHE≌Rt△DGH(HL),
∴∠DHG=∠HEA,
∵∠AHE+∠HEA=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形HEFG为正方形;

(2)过F作FM⊥DC,交DC延长线于M,连接GE,
∵AB∥CD,
∴∠AEG=∠MGE,
∵HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠MGF,
在△AHE和△MFG中,∠A=∠M=90°,HE=FG,
∴△AHE≌△MFG,
∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,
因此S△FCG=
1 |
2 |
1 |
2 |
(3)设DG=x,则由第(2)小题得,S△FCG=7-x,在△AHE中,AE≤AB=7,
∴HE2≤53,
∴x2+16≤53,
∴x≤
37 |
∴S△FCG的最小值为7−
37 |
37 |
∴当DG=
37 |
37 |
看了 (2010•宁德模拟)已知,...的网友还看了以下:
(2012•阜宁县一模)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG 2020-05-13 …
设P是三角形ABC内任意一点,S1表示三角形ABC的面积,y1=s2/s1;y2=s3/s1;y= 2020-05-14 …
如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG//DB交C 2020-05-16 …
复合函数奇偶性质的证明对于复合函数F(x)=f[g(x)](1)若g(x)为偶函数,则F(x)为偶 2020-06-08 …
如图,正方形ABCD,G为BC延长线上一点,E为射线BC上一点,连接AE.(1)若E为BC的中点, 2020-06-12 …
如图,在四棱椎P-ABCD中,底面ABCD是∠BAD=60°且边长为2的菱形,侧面PAD为正三角形 2020-06-21 …
如图,设def分别为三角形abc三边的中点.若G是三角形ABC的重心求证G是三角形DEF的重心若H 2020-07-30 …
如图,H为四棱锥P-ABCD的棱PC的三等分点,且PH=12HC,点G在AH上,AG=mAH.四边 2020-07-31 …
如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED是一个平行四边形 2020-11-01 …
如图,在正方形ABCD中,G是BC上的任意一点(G与B,C两点不重合),E,F是AG上的两点(E,F 2021-01-11 …