早教吧作业答案频道 -->其他-->
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上()A.当f′(x)≥0时,f(x)≥g(x)B.当f′(x)≥0时,f(x)≤g(x)C.当f″(x)≤0时,f(x)≥g(x)D.
题目详情
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上( )
A.当f′(x)≥0时,f(x)≥g(x)
B.当f′(x)≥0时,f(x)≤g(x)
C.当f″(x)≤0时,f(x)≥g(x)
D.当f″(x)≤0时,f(x)≤g(x)
A.当f′(x)≥0时,f(x)≥g(x)
B.当f′(x)≥0时,f(x)≤g(x)
C.当f″(x)≤0时,f(x)≥g(x)
D.当f″(x)≤0时,f(x)≤g(x)
▼优质解答
答案和解析
【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点x1,x2及常数0≤λ≤1,恒有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),则曲线是凸的.
显然此题中x1=0,x2=1,λ=x,则(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),
故当f''(x)≤0时,曲线是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),
故应该选C
【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F(0)=F(1)=0,且F''(x)=f''(x),故当f''(x)≤0时,曲线是凸的,从而F(x)≥F(0)=F(1)=0,即F(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),
故应该选:C.
显然此题中x1=0,x2=1,λ=x,则(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),
故当f''(x)≤0时,曲线是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),
故应该选C
【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F(0)=F(1)=0,且F''(x)=f''(x),故当f''(x)≤0时,曲线是凸的,从而F(x)≥F(0)=F(1)=0,即F(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),
故应该选:C.
看了 设函数f(x)具有二阶导数,...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
只有F(x)=f(x)-f(-x)的定义域的意思不理解!已知f(x)的定义域为-4,3,则函数F( 2020-05-15 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0,都有: 2020-06-12 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
若f(x),g(x)的定义域都是R,且x-f(g(x)=0有实数解,则g(f(x))不可能是()A 2020-07-31 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
已知函数f(x)是奇函数:当x>0时,f(x)=x(1-x);则当x<0时,f(x)=()A.f(x 2020-11-01 …
求f(x)解析式1.已知f(1+1/x)=x2+1/x2+3/x,求f(x)解析式2.已知f(求f( 2020-12-08 …
已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)*f(y),且当x<0时f( 2020-12-27 …