早教吧作业答案频道 -->数学-->
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1),f(x+1,y+1)=f[x,f(x+1,y)](1)求证:f(1,n)-f(1,n-1)为常数(n是正整数)(2)an=f(2-n),n是正整数,求证:an是等差数列,并求a1+a1+...+an
题目详情
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1),f(x+1,y+1)=f[x,f(x+1,y)]
(1)求证:f(1,n)-f(1,n-1)为常数(n是正整数)
(2)an=f(2-n),n是正整数,求证:an是等差数列,并求a1+a1+...+an
(1)求证:f(1,n)-f(1,n-1)为常数(n是正整数)
(2)an=f(2-n),n是正整数,求证:an是等差数列,并求a1+a1+...+an
▼优质解答
答案和解析
(1)f(0,y)=y+1,f(x+1,y+1)=f[x,f(x+1,y)],
令x=0,y=n-1得
f(1,n)=f[0,f(1,n-1)]=f(1,n-1)+1,
∴f(1,n)-f(1,n-1)=1,为常数.
(2)f(1,0)=f(0,1)=2,
∴f(1,n)=1+n,
an=f(2,-n)=f[1,f(2,-n-1)]=1+f(2,-n-1),
f(2,0)=f(1,1)=2,
∴an=2-n,
∴{an}是等差数列,
∴a1+a2+...+an=n(a1+an)/2=n(1+2-n)/2=n(3-n)/2.
令x=0,y=n-1得
f(1,n)=f[0,f(1,n-1)]=f(1,n-1)+1,
∴f(1,n)-f(1,n-1)=1,为常数.
(2)f(1,0)=f(0,1)=2,
∴f(1,n)=1+n,
an=f(2,-n)=f[1,f(2,-n-1)]=1+f(2,-n-1),
f(2,0)=f(1,1)=2,
∴an=2-n,
∴{an}是等差数列,
∴a1+a2+...+an=n(a1+an)/2=n(1+2-n)/2=n(3-n)/2.
看了 数列题!f(x,y)对所有实...的网友还看了以下:
在等比数列{An}中,已知a1+a2+.+an=2^n-1,求a1^2+a2^2+a3^2+……a 2020-05-17 …
求通项公式和前n项和Sn1.已知数列an=1/n(n+1)(n+2)(n+3)求Sn2.求和2+2 2020-06-08 …
几道估值的数学问题,悬赏30哦谢谢已知N=1+1/5+1/11+1/19+1/29+1/41+.+ 2020-07-15 …
紧急!设数列bn满足b1=1,bn>0(n=2,3.)其前n项乘积Tn=(a^(n-1)bn)^n 2020-07-18 …
a(n+1)=2a2-3^n,求通项公式an求和Sn=1-3+5-7+...+(-1)^(n-1) 2020-07-23 …
数列求通项的问题数列a1=1a(n+1)=2Sn+1(打括号的n-1是下标)求{an}用S(n+1 2020-07-29 …
已知数列{an}的首项a1=1,且an=2a(n-1)+1〔n大于等于2〕求a5(n-1)已知数列 2020-07-30 …
一道关于极限的高数题设x(n+1)=ln(1+xn),x1>0第一个问题:求lim(n趋于正无穷) 2020-07-30 …
1,设n元n-1个方程的齐次线性方程组的系数阵A的秩为n-1,求该齐次线性方程组的基础解系.2,给 2020-08-02 …
高中函数填空题2m+n=1求1/m+2/n的最小值.我的做法是这样的:两边同除mn,正好1/m+2 2020-08-03 …