早教吧作业答案频道 -->数学-->
设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立
题目详情
设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是( )
|
▼优质解答
答案和解析
| A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x), ∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x); 而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x)); ∴((f°g)•h)(x)≠((f•h)°(g•h))(x) B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x)) ((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x)) ∴((f•g)°h)(x)=((f°h)•(g°h))(x) C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))), ((f°h)°(g°h))(x)=f(h(g(h(x)))) ∴((f°g)°h)(x)≠((f°h)°(g°h))(x); D、((f•g)•h)(x)=f(x)g(x)h(x), ((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x), ∴((f•g)•h)(x)≠((f•h)•(g•h))(x). 故选B. |
看了 设f(x),g(x),h(x...的网友还看了以下:
设g(x)=1+x,且当x不等于0时f[g(x)]=1-x/x,则f(1/2)=()参考答案f[g 2020-05-04 …
高等数学题一道f(x)g(x)在[a,b]上可导,且f'(x)g(x)不等于f(x)g'(x).证 2020-06-10 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微分,中值定理设f(X),g(x)都在 2020-07-13 …
设可微函数f(x),g(x)满足f'(x)=g(x),g'(x)=f(x),且f(0)=0.g(0 2020-07-20 …
高等数学:设函数f(x)和g(x)在(-无穷,+无穷)内有定义,f(x)为连续函数,且f(x)≠0 2020-07-21 …
第1题A、f(x)是比g(x)高阶的无穷小B、f(x)是比g(x)低阶的无穷小C、f(x)与g(x 2020-07-30 …
已知函数f(x)=3-2log2x,g(x)=log2x.(1)若x∈[1,8],求函数h(x)=( 2020-12-08 …
二次函数已知函数f(x)=x^2+bc+c有两个零点0与-2,且函数g(x)与f(x)关于原点对称( 2020-12-08 …
设f(x),g(x),h(x)是R上的任意实数函数,如下定义两个函数和(f·g)(x);对任意x∈R 2020-12-22 …
已知f(x)=3-x的绝对值,g(x)=x^2-2x,F(x)=g(x),若f(x)大于等于g(x) 2020-12-31 …