早教吧作业答案频道 -->数学-->
正项数列{an}中,a1=4,其前n项和Sn满足:Sn2-(an+1+n-1)Sn-(an+1+n)=0.(Ⅰ)求an与Sn;(Ⅱ)令bn=2n−1+1(3n−2)an,数列{bn2}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<512.
题目详情
正项数列{an}中,a1=4,其前n项和Sn满足:Sn2-(an+1+n-1)Sn-(an+1+n)=0.
(Ⅰ)求an与Sn;
(Ⅱ)令bn=
,数列{bn2}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<
.
(Ⅰ)求an与Sn;
(Ⅱ)令bn=
2n−1+1 |
(3n−2)an |
5 |
12 |
▼优质解答
答案和解析
(本小题满分14分)
(Ⅰ)∵Sn2-(an+1+n-1)Sn-(an+1+n)=0,
∴[Sn-(an+1+n)](Sn+1)=0.
∵{an}是正项数列,∴Sn>0,Sn=an+1+n.
∴当n≥2时,an=Sn-Sn-1=an+1+n-an-(n-1).
∴an+1=2an-1,an+1-1=2(an-1),(n≥2),…(4分)
又∵a1=S1=a2+1,a1=4,∴a2=3,
∴an−1=(a2−1)•2n−2,
∴an=2n-1+1,n≥2,
综上,数列{an}的通项an=
.
当n=1时,Sn=4;
当n≥2时,Sn=4+(2+22+23+…+2n-1)+n-1
=4+
+n-1
=2n+n+1,
当n=1时也成立,
∴Sn=2n+n+1.…(7分)
(Ⅱ)证明:∵an=
,bn=
,
∴b1=
,bn=
,(n≥2),…(9分)
则当k≥2时,有bk2=
<
=
(Ⅰ)∵Sn2-(an+1+n-1)Sn-(an+1+n)=0,
∴[Sn-(an+1+n)](Sn+1)=0.
∵{an}是正项数列,∴Sn>0,Sn=an+1+n.
∴当n≥2时,an=Sn-Sn-1=an+1+n-an-(n-1).
∴an+1=2an-1,an+1-1=2(an-1),(n≥2),…(4分)
又∵a1=S1=a2+1,a1=4,∴a2=3,
∴an−1=(a2−1)•2n−2,
∴an=2n-1+1,n≥2,
综上,数列{an}的通项an=
|
当n=1时,Sn=4;
当n≥2时,Sn=4+(2+22+23+…+2n-1)+n-1
=4+
2(1−2n−1) |
1−2 |
=2n+n+1,
当n=1时也成立,
∴Sn=2n+n+1.…(7分)
(Ⅱ)证明:∵an=
|
2n−1+1 |
(3n−2)an |
∴b1=
1 |
2 |
1 |
3n−2 |
则当k≥2时,有bk2=
1 |
(3k−2)2 |
1 |
(3k−4)(3k−1) |
作业帮用户
2017-09-26
看了 正项数列{an}中,a1=4...的网友还看了以下:
数列求解a(n)a(n)>0,a(1)=1,(n+1)﹡[(a(n+1))^2]-n*[(a(n)) 2020-03-30 …
关于极限的题目a(n)=n*sin(∏/n)(n>=1)当n→∞时,求a(n)(n)为下标a(n) 2020-05-14 …
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知 2020-05-16 …
矩阵多项式的问题设P=(1214)A=(1002)AP=PA,求A^n解:A=PAP^-1A^n= 2020-07-30 …
已知数列递推公式a[n]=(n-1)/n*a[n-2](n>=0),求a[n]a[n]等于n分之括 2020-08-01 …
高一数学设A={x/x2+4x=0},B={x/x2+2(a+1)x+a2-1=0(1)若A交B, 2020-08-02 …
1.若(a^n*b^m*b)³=a^9*b^15,求2^m+n的值.2.计算;a^n-5(a^n+1 2020-11-01 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …
当0<a<1,n→+0,求na^n当n→+0时①0<a<1时,求na^n极值②a>1,求a^n/n极 2020-12-27 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …